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Abstract

The Somos 4 sequences are a family of sequences satisfying a fourth order bilinear
recurrence relation. In recent work, one of us has proved that the general term in
such sequences can be expressed in terms of the Weierstrass sigma function for an
associated elliptic curve. Here we derive the analogous family of sequences associated
with an hyperelliptic curve of genus two. We show that the sequences associated with
such curves satisfy bilinear recurrences of order 8. The proof requires an addition
formula which involves the genus two Kleinian sigma function with its argument shifted
by the Abelian image of the reduced divisor of a single point on the curve. The
genus two recurrences are related to a Bäcklund transformation (BT) for an integrable
Hamiltonian system, namely the discrete case (ii) Hénon-Heiles system.

1 Introduction

In recent work [24], one of us has considered fourth order quadratic recurrences of the
form

τn+2τn−2 = α τn+1τn−1 + β (τn)2, (1.1)

where α and β are constant parameters. Such recurrences arise in the theory of elliptic
divisibility sequences [44, 45, 40] and their generalizations, the Somos 4 sequences [38,
42]. In that context, both the parameters α, β and the iterates τn are integers, or more
generally take values in Q or a Galois extension, and in that case the sequences have
applications in number theory, as they provide a potential source of large prime numbers
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[13, 15]. Moreover the Somos 4 sequences, defined by a recurrence of the form (1.1),
provide a simple example of the Laurent phenomenon: taking the initial data τ0, τ1, τ2, τ3
and the parameters α, β as variables, all subsequent terms τn for n ≥ 4 in the sequence
are Laurent polynomials in these variables. Fomin and Zelevinsky have proved that this
remarkable “Laurentness” property is shared by a variety of other recurrences in one and
more dimensions, with applications in combinatorics and commutative algebra (see [18]
and references).

In [24] the following theorem was proved:

Theorem 1. The general solution of the quadratic recurrence relation (1.1) takes the
form

τn = ABnσ(z0 + nκ)

σ(κ)n2
, (1.2)

where κ and z0 are non-zero complex numbers, the constants A and B are given by

A =
τ0

σ(z0)
, B =

σ(κ)σ(z0) τ1
σ(z0 + κ) τ0

, (1.3)

and σ denotes the Weierstrass sigma function of an associated elliptic curve

y2 = 4x3 − g2x− g3. (1.4)

The values κ, z0 and the invariants g2, g3 are precisely determined from the initial data
τ0, τ1, τ2, τ3 and the parameters α, β.

In the next section we summarize some facts about elliptic divisibility sequences, Somos
4 sequences and the details of the above theorem. In particular we explain how the result
of Theorem 1 is connected to the second order solvable mapping

fn+1 =
1

fn−1fn

(

α+
β

fn

)

(1.5)

which is a degenerate case of the type of mapping studied by Quispel, Roberts and Thomp-
son [36]. (See also [37] for some recent work on the global behaviour of real-valued solutions
of such mappings.)
Remark. The case α = 0, which was excluded from the statement of the Theorem
in [24], corresponds to κ being a half period, so that ℘(κ) is a branch point of E, but
then the formula for τn is has a rather trivial alternating form: τ2k = τ0(τ2/τ0)

kβk(k−1)/2,
τ2k+1 = τ1(τ3/τ1)

kβk(k−1)/2. The map (1.5) is the autonomous version of the discrete
Painlevé I equation (qdPI)

fn+1 =
1

fn−1fn

(

αqn +
β

fn

)

, (1.6)

which has a continuum limit to the first Painlevé equation [31, 37]. The qdPI equation
(1.6) has tau-functions that yield a sequence of q-polynomials [23], and in the autonomous
case q = 1 this map reduces to (1.5). Matsutani has constructed some particular solutions
of (1.5) using elliptic functions, and has also considered certain higher order recurrences
associated with genus two hyperelliptic functions [28, 29] (see section 3 for more details).
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The above Theorem guarantees that only elliptic functions are necessary to specify the
general solution of the second order autonomous map (1.5).

The result of Theorem 1 can also be understood via the addition formula

σ(z + κ)σ(z − κ)

σ(z)2σ(κ)2
= ℘(κ) − ℘(z) (1.7)

for the forward and backward shifted Weierstrass sigma function in terms of the ℘ function
(see e.g. [46]). In section 3 this leads us to derive a higher order generalization of the
recurrence relation (1.1) by considering a suitable addition formula for the Kleinian hy-
perelliptic sigma function associated to a curve of genus two. The hyperelliptic Kleinian
sigma functions are a natural extension of Weierstrass elliptic functions to the case of
higher genus (see e.g. [2, 8] and references). The addition formula we consider is a spe-
cial case of the generalized Frobenius-Stickelberger formula in [12, 32], which is the exact
genus two analogue of (1.7). The main result of our considerations is to derive an eighth
order bilinear recurrence whose terms are given by an analogue of the formula (1.2). As
a corollary, we also derive solutions of a family of sixth order nonlinear difference equa-
tions in terms of Kleinian ℘ functions. The fourth section explains how this recurrence
is related to the BT (integrable discretization) of a Hamiltonian system with two degrees
of freedom, namely the integrable case (ii) Hénon-Heiles system; this BT first appeared
in [21, 22], and was put in an algebro-geometric setting in [27]. The extension to higher
genus is briefly discussed in our concluding section.

2 Elliptic divisibility and Somos 4 sequences

The sequence

0, 1,−1,−1,−1, 2, 1,−3, 5, 7, . . . (2.1)

is an example of an elliptic divisibility sequence. It is obtained from the recurrence

τn+2 =
τn+1τn−1 + (τn)2

τn−2
, (2.2)

with initial data taken as τ1 = 1, τ2 = τ3 = τ4 = −1. The sequence can be consistently
extended backwards for negative n ∈ Z, to give an antisymmetric sequence with τ−n =
−τn. Remarkably, despite the division by τn−2 at each iteration of (2.2), the subsequent
terms of the sequence are all integers, and they satisfy the divisibility property

τn|τm whenever n|m. (2.3)

More generally Morgan Ward [44, 45] introduced a family of such antisymmetric se-
quences defined by recurrences of the form

τn+2τn−2 = (τ2)
2τn+1τn−1 − τ1τ3(τn)2, (2.4)

which are derived by considering sequences of rational points nP on an elliptic curve E
over Q. To obtain integer sequences of this kind it is sufficient to require that

τ0 = 0, τ1 = 1, τ2, τ3, τ4 ∈ Z with τ2|τ4.
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Using the addition law on E and considering the multiples nP = (xn, yn) of a single point
P , Ward derived the bilinear recurrence (2.4) for τn, with the general term being written
in terms of the sigma function associated with the curve E, as

τn =
σ(nκ)

σ(κ)n2
. (2.5)

(See also [16, 40].)
Using the addition formula (1.7) for the Weierstrass sigma function, it is a simple

exercise to use the formula (2.5) in order to show that the terms of the elliptic divisibility
sequence satisfy the Hankel determinant relation

τn+mτn−m =

∣

∣

∣

∣

τmτn−1 τm−1τn
τm+1τn τmτn+1

∣

∣

∣

∣

, (2.6)

for all m,n ∈ Z. Starting from the Hankel determinant formula, it is then easy to prove
by induction that all τn are integers with the divisibility property (2.3).

If we consider the same recurrence (2.2) but instead take initial data τ0 = τ1 = τ2 =
τ3 = 1, then we find the sequence of integers

1, 1, 1, 1, 2, 3, 7, 23, 59, 314, . . . , (2.7)

known as the Somos 4 sequence (see [38, 41]). (In fact this Somos sequence is just ob-
tained by selecting the odd index terms of the elliptic divisibility sequence (2.1), up to an
alternating sign.) More generally, following the terminology of [38, 42], we refer to any
sequence defined by a bilinear recurrence of the form (1.1) as a Somos 4 sequence, while
the particular sequence above is denoted Somos (4). It turns out that any such sequence is
associated to a sequence of points P0 +nP on an associated elliptic curve E: this fact was
proved by algebraic means in the thesis of Swart [42], which refers to unpublished results
established independently by both Nelson Stephens and Noam Elkies. In [24], one of us
gave an alternative complex analytic proof, leading to the construction of the functional
form (1.2) of the general term, as in Theorem 1 above.

The approach taken in [24] was to regard equation (1.1) as the bilinear form of an
integrable map, analogous to the bilinear equation satisfied by the tau function for a
soliton equation [19, 30], and then solve the initial value problem for the bilinear equation
with specified initial data τ0, τ1, τ2, τ3 and parameters α, β. The quantity τn may be
regarded as being the tau function for the second order nonlinear map (1.5), to which it is
related by the substitution fn = τn+1τn−1/(τn)2. The map (1.5) has a first integral, given
by

J := J(fn−1, fn) = fn−1fn + α

(

1

fn−1
+

1

fn

)

+
β

fn−1fn
= J(fn, fn+1).

The algebraic formula for J itself implies that the pair (fn−1, fn) lies on an elliptic curve
for all n. In fact the general solution of the recurrence can be written in terms of the
Weierstrass ℘ function for a curve in the canonical form (1.4), as fn = ℘(κ)−℘(z0 + nκ).
The construction of this curve E and the points P0, P ∈ E solves the initial value problem
for (1.5) which then yields the solution (1.2) for the recurrence (1.1). It is convenient for
us to summarize the results of [24] by expressing the solution of this initial value problem
in the form of an algorithm, as follows:
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Step 1: Find the backwards iterate τ−1 from the initial data, evaluate the quantities f0 =
τ1τ−1/(τ0)

2 and f1 = τ2τ0/(τ1)
2, and use these to calculate the integral J = J(f0, f1) =

℘′′(κ).
Step 2: Use J , α, β to calculate λ = 1

3α

(

J2/4 − β
)

= ℘(κ). This gives the point P =
(λ, µ) = (℘(κ), ℘′(κ)) ∈ E, with µ = ±√

α.
Step 3: Construct the invariants g2, g3 of the curve E as in (1.4), from the formulae

g2 = 12λ2 − 2J, g3 = 4λ3 − g2λ− α.

Step 4: Iterate (1.5) backwards to obtain f−1 from f0 and f1. Hence find the point
P0 = (ν, ξ) = (℘(z0), ℘

′(z0)) ∈ E from the formulae ν = λ− f0, ξ = f2
0 (f1 − f−1)/µ.

Step 5: Calculate the values κ, z0 ∈ C from the elliptic integrals

κ = ±
∫ P

∞

dx

y
, z0 = ±

∫ P0

∞

dx

y
;

these should be interpreted as the points in the Jacobian Jac(E) corresponding to the
points P,P0 ∈ E respectively. Note that because of the involution y → −y these values
are only defined by to an overall ± sign, subject to the constraint that ℘′(κ)℘′(z0) = ξµ =
f2
0 (f1 − f−1) as in Step 4. Once z0 and κ are obtained then A are B are found from the

formulae (1.3).
Remarks. It is useful to note that the coefficients α, β in the recurrence are given as
elliptic functions of κ by

α = ℘′(κ)2, β = ℘′(κ)2
(

℘(2κ) − ℘(κ)
)

. (2.8)

The above solution of the initial value problem establishes an exact correspondence be-
tween two sets of six parameters: the parameters g2, g3, κ, z0, A,B that specify the elliptic
curve E, the two points P,P0 ∈ E, and the prefactors in (1.2); and the parameters
α, β, τ0, τ1, τ2, τ3 specifying the constant coefficients and initial data for the recurrence
(1.1). In order to interpret (1.5) as an integrable map, it is necessary to further specify
a symplectic structure [6, 43]; symplectic coordinates and a Lax pair were given in [24],
which make (1.5) equivalent to the discrete g = 1 odd Mumford system in [27].

As an example of the above algorithm, we present the results for the Somos (4) sequence
(2.7), with α = β = τ0 = τ1 = τ2 = τ3 = 1. We find τ−1 = 2, so f0 = 2, f1 = 1 gives
J = 4 in Step 1. In Steps 2 and 3 we have λ = 1, set µ = 1 and then find g2 = 4, g3 = −1,
and in Step 4 we obtain f−1 = 3/4 so that ν = −1, ξ = 1. Thus the Somos (4) sequence
corresponds to the sequence of points P0 + nP = (−1, 1) + n(1, 1) on the curve

E : y2 = 4x3 − 4x+ 1.

Finally, evaluating the elliptic integrals and sigma functions to 9 decimal places using
the MAPLE computer algebra package (version 8), we find that the curve has real and
imaginary half-periods ω1 = 1.496729323 and ω3 = 1.225694691i respectively, while

κ− 2ω1 = −
∫ ∞

1
(4t3 − 4t+ 1)−

1

2 dt = −1.134273216,

z0 − 2ω3 =

∫ ∞

−1
(4t3 − 4t+ 1)−

1

2 dt = 0.204680500 − 1.225694691i,
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which yield the other quantities in (1.2) as

σ(κ) = 1.555836426, A =
1

σ(z0)
= 0.112724016 − 0.824911687i

B =
σ(κ)σ(z0)

σ(z0 + κ)
= 0.215971963 + 0.616028193i.

However, the sequence of arguments of the sigma function can be written more succinctly
as

z0 + nκ ≡ (2n − 3)ẑ0, ẑ0 = 0.929592715 + ω3,

so that the iterates of the recurrence correspond to the sequence of points (2n − 3)P̃ on
the curve E, where P̃ = (0, 1), P = 2P̃ . The full sequence of points nP̃ is associated with
the elliptic divisibility sequence (2.1).

Elliptic divisibility sequences are currently of considerable interest due to the fact that
large prime numbers can occur therein (i.e. τp may be prime when the index p is prime,
see [13, 15, 40]). Cantor has considered the division polynomials for odd hyperelliptic
curves [11], corresponding to sequences of divisors n(P − ∞), which also satisfy higher
order recurrences written in terms of Hankel determinants; Matsutani has obtained the
functional form of these division polynomials in genus two [29]. In the next section we
shall derive an eighth order bilinear recurrence associated with the sequence of divisors
D0 + n(P −∞), where D0 = (P1 −∞) + (P2 −∞) is the reduced divisor of two points on
a hyperelliptic curve of genus two.

3 Addition of one point in genus two

Let us consider an algebraic curve X of genus two defined by the affine model

X :=
{

(x, y)
∣

∣

∣ y2 = f(x) ≡ 4x5 +

4
∑

j=0

cjx
j
}

, (3.1)

which realizes the curve as a two-sheeted covering of the Riemann sphere with 2g + 1
branch points in the complex plane plus a single branch point ∞ at infinity. The vectors of
canonical holomorphic differentials and canonical meromorphic (second kind) differentials
are denoted

du =







dx
y

x dx
y






, dr =







(12x3+2c4x2+c3x)dx
4y

x2 dx
y







respectively. If we let (A1, A2;B1, B2) denote the canonical homology basis for the compact
Riemann surface corresponding to X, with non-vanishing intersections Aj ·Bk = δjk, then
the 2 × 2 matrices of A- and B-periods are given by

2ω =







∮

A1

dx
y

∮

A2

dx
y

∮

A1

x dx
y

∮

A2

x dx
y






, 2ω′ =







∮

B1

dx
y

∮

B2

dx
y

∮

B1

x dx
y

∮

B2

xdx
y






.
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The Jacobian of X is the complex torus Jac(X) = C2/Γ, where Γ = 2ωZ2 ⊕ 2ω′Z2 is
the lattice generated by the periods of canonical holomorphic differentials. The elements
(P1, P2) of the symmetric product (X)2 can be identified with degree zero divisors D =
(P1 −∞) + (P2 −∞), which are mapped to Jac(X) by the Abel map:

u =

∫ P1

∞
du +

∫ P2

∞
du ∈ Jac(X)

(where here we are basing the map at ∞).
The Kleinian sigma function σ(u), which is a quasiperiodic function of (u1, u2)

T = u ∈
C2, is the genus two analogue of the Weierstrass sigma function. The Kleinian ζ and ℘
functions are defined by

ζj(u) =
∂ log σ(u)

∂uj
, ℘jk(u) = −∂

2 log σ(u)

∂uj∂uk
, ℘jkl(u) = −∂

3 log σ(u)

∂uj∂uk∂ul
, j, k = 1, 2.

We refer the reader to other works such as [2, 8] for a detailed introduction to hyperelliptic
curves, Kleinian functions and their definition in terms of Riemann theta functions (see
also [4, 12, 32, 33, 29] and references).

Vectors v in the theta divisor Θ in Jac(X) can be characterized by the fact that
σ(v) = 0. We wish to take a vector v ∈ Θ in the theta divisor, given by

v =

∫ (λ,µ)

∞
du; (3.2)

so v corresponds to the (reduced) divisor of a single point (λ, µ) ∈ X, with µ2 = f(λ).
In [8] (Theorem 4.9) it is proved that the Baker function

Φ : Jac(X) ×X → C,

defined for u ∈ Jac(X) and (λ, µ) ∈ X by

Φ(u; (λ, µ)) =
σ(v − u)

σ2(v)σ(u)
exp

(

−
∫ (λ,µ)

∞
drTu

)

, v =

∫ (λ,µ)

∞
du, (3.3)

satisfies the Schrödinger equation

(∂2
2 − 2℘22)Φ = (λ+ c4/4)Φ. (3.4)

Note that we have chosen a particular normalization for the Baker function compared with
[8], including the denominator σ2(v) 6= 0, and the principal value symbol −

∫

in (3.3) denotes
the fact that the integral of the meromorphic differential dr is regularized at infinity.

Let us define two different Baker-Akhiezer functions Φ± related by the hyperelliptic
involution, as

Φ± = Φ(u; (λ,±µ)).

Then from the proof of Theorem 4.9 in [8] (restricting to g = 2) we have that

∂2 log Φ± =
±µ+ ∂2P(λ;u)

2P(λ;u)
, (3.5)
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where

P(λ;u) = λ2 − ℘22(u)λ− ℘12(u) (3.6)

is the Bolza polynomial in genus two. Hence it follows that P = P(λ;u) satisfies the
Ermakov-Pinney equation with respect to derivatives ∂2 in the variable u2, namely

P(∂2
2P) − 1

2
(∂2P)2 + 2V P2 +

µ2

2
, V := −2℘22(u) − λ− c4/4. (3.7)

It is a well known classical result of Ermakov (see [20] for references) that the general
solution of the Ermakov-Pinney equation (3.7) is just given by a product of two solutions
of the Schrödinger equation (∂2

2 + V )ψ = 0 with Wronskian µ.
Taking the difference of the ± equations (3.5) we have

W (Φ−,Φ+)

Φ+Φ−
=
µ

P , where W (Φ−,Φ+) =

∣

∣

∣

∣

Φ− Φ+

∂2Φ− ∂2Φ+

∣

∣

∣

∣

is the Wronskian. Clearly this must be independent of u2, but we claim that in fact this
Wronskian has precisely the value µ, which means that the product Φ+Φ− = P. Rewriting
this in terms of the sigma function, we can state the following result.
Proposition. The Kleinian sigma function for a hyperelliptic curve (3.1) of genus two
satisfies the following formula for addition of a single point on the curve:

σ(u + v)σ(u − v)

σ(u)2σ2(v)2
= P(λ;u) (3.8)

In the above, u ∈ Jac(X) is a generic vector in the Jacobian, v ∈ Θ ⊂ Jac(X) is the
image of the single point (λ, µ) ∈ X under the Abel map, and P is the Bolza polynomial
defined by (3.6).
Proof: Starting from Baker’s addition theorem for genus two [2],

σ(u + v)σ(u − v)

σ(u)2σ(v)2
= ℘22(u)℘12(v) − ℘12(u)℘22(v) + ℘11(v) − ℘11(u), (3.9)

where u, v are generic points in Jac(X), and multiplying both sides by σ(v)2/σ2(v)2,
the result follows by taking the limit σ(v) → 0 as v tends to the theta divisor. It is
necessary to use the fact (see e.g. [32]) that the x coordinate of the point (λ, µ) ∈ X is
given, in terms of derivatives of the sigma function evaluated on the theta divisor Θ, by
the expression λ = −σ1(v)/σ2(v). This follows from the fact that differentiating σ(v) = 0
with respect to λ gives, by the chain rule,

dv1
dλ

∂1σ(v) +
dv2
dλ

∂2σ(v) =
σ1(v)

µ
+
λσ2(v)

µ
= 0,

for v ∈ Θ given by (3.2). 2

Remark. Enolskii and Gibbons recently calculated the exact analogue of (3.8) in genus
three. The addition formula (3.8) is a special case of the generalized Frobenius-Stickelberger
addition formula in genus two considered in [12, 32]. Onishi has further generalized the
Frobenius-Stickelberger formula to hyperelliptic sigma functions for all genera [33], and



54 H W Braden, V Z Enolskii and A N W Hone

the special case of the formula corresponding to addition of one point has been applied to
the problem of construction of Wannier functions for quasi-periodic finite-gap potentials
in [4].

Cantor has constructed the division polynomials for hyperelliptic curves, and obtained
certain recurrence relations for them in the paper [11], where in particular an eighth order
bilinear recurrence is found in genus two. Up to a suitable normalization, Matsutani
has considered the exact analytic expression for these division polynomials, which are
equivalent to the sequence of functions an = σ(nv)/σ2(v)n

2

, known as as hyperelliptic
psi-functions [28, 29]. In the following theorem, we present a sequence of tau-functions
that generalize these psi-functions and yet satisfy the same recurrence of Somos 8 type.
Theorem 2. Define the sequence {τn |n ∈ Z} by

τn = ABnσ(u + nv)

σ2(v)n2
, (3.10)

where u ∈ Jac(X) is a generic vector in the Jacobian of the genus two curve (3.1), v ∈
Θ ⊂ Jac(X) is the image of the single point (λ, µ) ∈ X under the Abel map, σ denotes the
Kleinian sigma function of the curve, and A,B are arbitrary constants. Then the terms
of the sequence satisfy a bilinear recurrence of order 8, given by

τn+4τn−4 =

3
∑

j=0

αj τn+jτn−j, (3.11)

where the coefficients αj (independent of n) are given by

α1 =
σ(6v)σ(3v)2

σ(4v)σ(2v)2σ2(v)30
, α3 =

σ(3v)σ(5v)

σ(2v)σ(4v)σ2(v)14
, (3.12)

α2 =
σ(4v)2

σ2(v)24σ(2v)2

(

1 − σ(3v)3σ(5v)

σ(4v)3σ(2v)

)

, α0 = − σ(6v)

σ(2v)σ2(v)32
. (3.13)

Proof. Substituting the expression (3.10) into (3.11) and using Baker’s formula (3.9)
together with the result of the Proposition yields an expression of the form

C0(v) +C11(v)℘11(u) + C12(v)℘12(u) +C22(v)℘22(u) = 0.

The three functions ℘jk(u), j, k = 1, 2 on Jac(X) are not linearly dependent (although
they do satisfy a nonlinear relation [8, 12], giving the Kummer surface in CP3). Therefore
each of the coefficients C0(v), C11(v), C12(v), C22(v) must vanish, which leads to a linear
system for the αj as functions of v. This determines the above formulae for the coefficients
αj uniquely in terms of σ, its derivative σ2, and the ℘jk evaluated at various multiples
of v. The terms involving ℘jk can be removed by making use of the addition formulae
(3.9) and (3.8) to yield the expressions (3.12) and (3.13) in terms of σ and σ2 alone. By
considering the limit u → 0, it is clear that these are equivalent to Matsutani’s expressions
for the coefficients in the eighth order bilinear recurrrence for the psi-function (see formula
(3.13) in [28]). 2

Corollary. The sequence of Bolza polynomials

fn = P(λ;u + nv) = λ2 − ℘22(u + nv)λ− ℘12(u + nv), (3.14)
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for u ∈ Jac(X) and v ∈ Θ, satisfies the sixth order nonlinear difference equation

f4
n

3
∏

k=1

(fn+kfn−k)
4−k = α0 +

3
∑

j=1

αjf
j
n

j−1
∏

k=1

(fn+kfn−k)
j−k, (3.15)

with the coefficients αj as given in equations (3.12) and (3.13).
Proof of Corollary. Upon setting fn = τn+1τn−1/(τn)2 with τn as in (3.10), and using
the addition formula (3.8), the result is an immediate consequence of Theorem 2. 2

Remarks. Taking u as the Abelian image of (P1, P2) ∈ (X)2, the sequence (3.14)
corresponds to the linear flow u + nv in the Jacobian, or equivalently the sequence of
divisors Dn ∼ D0 +n(P −∞) ∼ D0 −n(P̂ −∞) with D0 ∼ (P1 −∞)+ (P2 −∞) and P̂ =
(λ,−µ), the image of P = (λ, µ) under the hyperelliptic involution. The Bolza polynomial
leads to the solution of the Jacobi inversion problem for the curve (3.1) (see Theorem 2.2 in
[8], and section 4 below), so that in particular if Dn ∼ (x1(n), y1(n))+(x2(n), y2(n))−2∞,
then we have

fn = P(λ;u + nv) = (λ− x1(n))(λ− x2(n)), yj(n) = −∂2P(λ;u + nv)|λ=xj
, j = 1, 2.

Cantor’s results in [11] concern the sequence of reduced divisors Dn ∼ n(P −∞), corre-
sponding to the multiples of a single point on an odd hyperelliptic curve of genus g. In
particular for g = 2 he obtains a bilinear recurrence of order 8, which is the degenerate
case u = 0 (P1 → ∞, P2 → ∞) of our construction, while the analytic derivation in
that case appears in the work of Matsutani [28, 29]. The sixth order difference equation
(3.15) appears as equation (3.15) in [28], where the special solutions with u = 0 are also
presented.

The sigma functions of genus g odd hyperelliptic curves, given by y2 = f(x) with f a
polynomial of odd degree 2g + 1, are known to be tau functions of the Korteweg–deVries
(KdV) hierarchy of partial differential equations (see [8] for instance). It is also known
that when the curve degenerates completely to y2 = 4x2g+1, the corresponding sigma
function degenerates to a polynomial (see [9, 33]), which gives a rational solution of KdV
in terms of a Schur function (see [1] and chapter 14 in [26]). It is instructive to consider
the case when the curve (3.1) for g = 2 completely degenerates to the singular rational
curve y2 = 4x5. In that case the Kleinian sigma function degenerates to the Schur function

σ(u) = u1 −
u3

2

3
, (3.16)

which is the tau function of the three-pole rational solution of the KdV equation

4∂1V = ∂3
2V + 6V ∂2V, V = −2℘22(u) = 2∂2

2 log σ(u).

The theta divisor consists of vectors of the form

v =







∫ (λ,µ)
∞

dx√
4x5

∫ (λ,µ)
∞

xdx√
4x5






=





−1
3λ

−3/2

−λ−1/2



 ≡
(

γ3/3
γ

)

, γ ∈ C,

satisfying σ(v) = 0. It is trivial to check that the Schur function satisfies the addition
formula (3.8). Defining τn in terms of the Schur function (3.16) by (3.10), it is easy
to verify that this gives a particular solution of the eighth order recurrence (3.11) with
α0 = −35/γ64, α1 = 56/γ60, α2 = −28/γ48, α3 = 8/γ28.
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4 BT for the case (ii) Hénon-Heiles system

The integrable case (ii) Hénon-Heiles system is a system of two degrees of freedom defined
by the natural Hamiltonian

h1 =
1

2
(p2

1 + p2
2) + q32 +

1

2
q2q

2
1 −

1

2
aq21 + cq2 −

m2

2q21
. (4.1)

The coordinates qj and momenta pj are canonically conjugate, and Hamilton’s equations

dqj
dt

= {h1, qj},
dpj

dt
= {h1, pj}, j = 1, 2 (4.2)

are equivalent to the ordinary differential equation for travelling wave solutions of the fifth
order flow in the KdV hierarchy [17]. The equations of motion (4.2) can be written in the
form of a Lax equation

dL

dt
= [N,L],

where the Lax matrix L is

L(x; qj , pj) =

(

1
2p2x− 1

8p1q1 B(x; qj, pj)
2x2 + (q2 + 2a)x− 1

8q
2
1 −1

2p2x+ 1
8p1q1

)

, (4.3)

with

B(x; qj, pj) = 2x3 + (−q2 + 4a)x2 +
1

8

(

q21 + 4q22 − aq2 + 16a2 + 4c
)

x+
1

8

(

p2
1 −

m2

q21

)

.

(Note that we have L → − (u−a)
8 L, u → x + a compared with reference [21].) The Lax

equation is the compatibility condition for the linear system

LΨ = yΨ,
dΨ

dt
= NΨ, N =

(

0 x+ a− q2
1 0

)

. (4.4)

The genus two spectral curve is of the precise form (3.1), namely

det (L − y1) = y2 − 4x5 − 12ax4 − (c+ 12a2)x3 − 1

2
h1x

2 − 1

2
h2x− m2

64
= 0,

with

h2 =
1

4
(q2 + 2a)p2

1 −
1

4
q1p1p2 −

1

32
q41 − 1

8

(

q22 − 2aq2 + c+ 4a2
)

q21 −
m2(q2 + 2a)

4q21

being the second independent integral, in involution with h1 i.e. {h1, h2} = 0. The integral
h2 generates a second commuting flow

dqj
ds

= {h2, qj},
dpj

ds
= {h2, pj}, j = 1, 2.

Up to a shift of origin, the time variables s, t can be identified with the coordinates
u1, u2 respectively on Jac(X). Using the results of Theorem 2.2 in [8], the solution of the
Hénon-Heiles system can be reduced to the Jacobi inversion problem

(

s
t

)

≡ u =

∫ (x1,y1)

∞
du +

∫ (x2,y2)

∞
du,
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where the separation coordinates x1, x2 are found from the (2, 1) entry in the Lax matrix
(4.3), given as a multiple of the Bolza polynomial by

2x2 + (q2 + 2a)x− 1

8
q21 = 2(x− x1)(x− x2) = 2P(x;u).

The separation variables (xj, yj), j = 1, 2 correspond to the reduced divisor D0 = (x1, y1)+
(x2, y2) − 2∞, and they are related to the Kleinian functions by

℘12(u) = −x1x2, ℘22(u) = x1 + x2, ℘221(u) =
x1y2 − x2y1

x1 − x2
, ℘222(u) =

y1 − y2

x1 − x2

(see e.g. [12]). Thus the connection with the Bolza polynomial immediately leads to the
solution of the Hénon-Heiles system in terms of Kleinian ℘ functions, which is

q21 = 16℘12(u), q2 = −2℘22(u) − 2a, q1p1 = 8℘221(u), p2 = −2℘222(u).

It is shown in [21] that the case (ii) Hénon-Heiles system has a Bäcklund transformation
(BT) with parameter λ, which is a symplectic map with generating function F (q1, q̃1;λ)
such that dF =

∑

j=1,2 pjdqj − p̃jdq̃j. The explicit form of the generating function is

F = Z+
m

2
log

(

Z −m

Z +m

)

+
16

5
Y 5 +4(q2 + q̃2)Y

3 +
(

2(q2 + q̃2)
2−2q2q̃2 +

1

2
(q21 + q̃21)+2c

)

Y,

where Z(qj, q̃j) and Y (qj, q̃j) are defined by

Z2 = m2 + λq21 q̃
2
1, Y 2 = λ+ a− 1

2
(q2 + q̃2) .

The BT can be realized as a similarity transformation on the Lax pair (discrete Lax
equation)

L̃M = LM, where L̃ = L(x; q̃j, p̃j), M =

(

−Y Y 2 + x− λ
1 −Y

)

(4.5)

The matrix M is the elementary Darboux matrix (see [39]). Clearly from (4.5) the BT
preserves the spectrum of L, and so maps solutions to solutions.

In fact, the BT was constructed in [21] by making use of the formulae for the Darboux
transformation of the Schrödinger equation, since the components of Ψ in the linear system
(4.4) are given by Ψ = (ψ, ∂2ψ)T with (∂2

2 + q2)ψ = (x + a)ψ. Then the quantity Y
appearing in the Darboux matrix can be given explicitly in terms of the Baker function
Φ+ defined in (3.3) as

Y = ∂2 log Φ+ ≡ ∂2 log Φ(u;λ) = ζ2(u− v) − ζ2(u) + −
∫ (λ,µ)

∞
dr2,

and by a simple calculation using (3.5) we also have

Y =
µ+ ∂2P(λ;u)

2P(λ;u)
=

−µ+ ∂2P(λ;u − v)

2P(λ;u − v)
,
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which is equivalent to equation (2.9) in [21].
It follows from general results in [27] that the BT defined by the Darboux matrix M

just gives a shift on the Jacobian, and here we see that

q̃21 = 16℘12(u−v), q̃2 = −2℘22(u−v)−2a, q̃1p̃1 = 8℘221(u−v), p̃2 = −2℘222(u−v).

In terms of divisors, we have the equivalence

D̃ ∼ D0 + (λ,−µ) −∞ ∼ (x̃1, ỹ1) + (x̃2, ỹ2) − 2∞ ∼ D−1.

Similarly, applying the same BT but using the Baker function Φ− corresponds to adding
the point P = (λ, µ) instead of P̂ = (λ,−µ), which gives the divisor D1 ∼ D0 +(λ, µ)−∞.
In other words, the nth term in the sequence of Bolza polynomials (3.14), with argument
u+nv ∈ Jac(X), is the result of n applications of the Hénon-Heiles BT, adding the same
point P each time. We should point out that the Hénon-Heiles BT given here and in [21]
is the same as the g = 2 discrete odd Mumford system in [27], with a particular choice of
symplectic structure.

5 Conclusions

We have constructed an eighth order bilinear recurrence relation (3.11) whose nth term
is expressed in terms of the Kleinian sigma function of an odd hyperelliptic curve (3.1)
of genus two. Moreover, we have explained how this is connected to the BT for the case
(ii) integrable Hénon-Heiles system of [21, 22]: each shift n → n + 1 in the recurrence
corresponds to the shift on the Jacobian induced by the BT.

The question remains of whether we can solve the initial value problem for an eighth
order recurrence of the form (3.11). In fact, the expression (3.10) depends on at most 10
parameters: the five coefficients cj , j = 0, . . . , 4 that specify the curve plus the three points
P1, P2, P on the curve to specify the sequence of divisors Dn ∼ (P1 − ∞) + (P2 − ∞) +
n(P −∞), and the two prefactors A,B. (Actually, the constant c4 can be removed from
the start by making a shift in x.) The general eighth order recurrence (3.11) would have
four parameters αj , j = 0, 1, 2, 3 in general position and 8 initial data τj , j = 0, . . . , 7. In
fact, by counting arguments, we expect that the general solution of a bilinear recurrence
consisting of N + 2 bilinear terms,

τn+N+1τn−N−1 =

N
∑

j=0

αj τn+jτn−j,

which is of order 2N + 2, should correspond to a sequence of divisors Dn ∼ ∑N
j=1(Pj −

∞)+n(P −∞) on an hyperelliptic curve of genus N , since this solution should depend on
3N +3 parameters. This expectation agrees with the form of vector addition formulae for
Riemann theta functions obtained by Buchstaber and Krichever [7], which have precisely
N + 2 terms in genus N . However, preliminary calculations suggest the need to consider
a different model for these curves, without a branch point at infinity. For example, sigma
functions for curves of the form

y2 = 4x6 +
5
∑

j=0

cjx
j
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should give solutions to the Somos 6 recurrence

τn+3τn−3 =

2
∑

j=0

αj τn+jτn−j;

this should correspond to the BT for the g = 2 even Mumford system in [27], which has a
spectral curve of this type. This agrees with recent results of van der Poorten [34], which
show that a certain class of Somos 6 sequences arise from the continued fraction expansion
of the square root of a sextic.
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Note added in Proofs. In a private communication, David Cantor has shown one of us
that by extending the results of [11] to divisor sequences D0 + n(P −∞) it is possible to
prove that the sequence of tau functions τn given by (3.10) in Theorem 2 satisfies a family
of trilinear recurrence relations given in terms of a Hankel type determinant, that is

a2
2 am τnτn+mτn−m =

∣

∣

∣

∣

∣

∣

amτn−2 am+1τn−1 am+2τn
am−1τn−1 amτn am+1τn+1

am−2τn am−1τn+1 amτn+2

∣

∣

∣

∣

∣

∣

(5.1)

for all m,n ∈ Z, where am = σ(mv)

σ2(v)m2 . The above formula is a genus two analogue of a

family of higher order recurrences satisfied by Somos 4 sequences [35] (cf. also Morgan
Ward’s identity (2.6) for elliptic divisibility sequences and [25]). Up to a suitable choice
of normalization, these am are equivalent to the genus two division polynomials derived
by Cantor [11], whose functional form has been specified precisely in the works [28, 29] of
Matsutani, where they are referred to as hyperellliptic psi-functions. In the limit u → 0,
when τn → an, the equation (5.1) reduces to a Hankel formula for these psi-functions
obtained by algebraic means in [11], which is also presented as formula (3.10) in [28],
and rederived using analytic techniques in [29]. Setting m = 3 in (5.1) yields a sixth
order trilinear recurrence for τn, while setting m = 4 yields an eighth order trilinear
recurrence. As was first pointed out to us by Cantor, the bilinear recurrence (3.11) above
then follows as a consequence of these two trilinear identities, upon eliminating between the
two of them. Interestingly, Buchstaber and Leykin have very recently derived a trilinear
differential addition formula for genus two sigma functions - see Theorem 5.6 in [10].
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and Garnier systems, CRM Proceedings and Lecture Notes Series 25, Editors: Levi D and
Ragnisco O, American Mathematical Society, 2000, 231–235.

[23] Hone A N W, Algebraic curves, integer sequences and a discrete Painlevé transcendent, poster
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