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Abstract. A lot of data on the web are usually embedded in the semi-structured pages. In order to 
automatically process the content embedded in Web pages, extracting data from them and making it 
available to computer applications remains a complex and urgent task. Most of current approaches 
use a single classifier to extract web data, but relying on a single classifier is not sufficient and 
different classifier has different performance for a problem. In this paper, we combine multiple 
classifiers to extract web data. Firstly, we identify the main data regions of web pages, and 
construct feature sets of text nodes in the regions. Secondly, we choose three kinds of base 
classifiers and then use the voting method to integrate results of each classifier. Finally, we combine 
integration results with heuristic rules to get the final extraction results. The experiment results 
show that our approach outperforms the baseline approaches. 

Introduction 

The amount of information that is currently available on the Web in HTML format grows at a 
very fast pace. However, websites are often intended to be browsed by humans, and not computed 
over by applications. So in order to automatically process the content embedded in Web pages, 
extracting data from them and making it available to computer applications remains a complex and 
urgent task. There has been a lot of recent research in the database and AI communities on web data 
extraction [1], which can identify the information from unstructured or semi-structured Web pages, 
and turn it into a structured format. In general, according to the used techniques, web data 
extraction can be divided into the following categories: WDE by natural language processing [2], 
WDE by wrapper induction [3], WDE by html DOM structure [4], WDE by ontology [5], WDE by 
machine learning [6] and so on. With the dramatic increase of web data, the first four methods have 
difficult to process these large scale data. The methods of machine learning for large-scale web data 
extraction will be the future research trends. However, current main methods usually use a single 
classifier to extract the data, and the extraction accuracy still needs to be further improved. As 
different single classifier has different performance on web data extraction, in this paper we propose 
a method which combines multiple classifiers to extract web data. Firstly, we identify main data 
regions according to the page structure, then generate feature set of text nodes (We call leaf nodes 
of the DOM [7] tree of the Web page as text nodes). Secondly, we choose the base classifiers to 
build classification models with feature set, and then use the voting method to integrate 
classification results of each base classification model. Finally, we combine integration results with 
heuristic rules to get the final extraction results. Experimental results on 20 different structural sites 
prove the validity of our approach. 

Our Approach 

Framework 

The framework is divided into two phrases. The first one is training phrase. In this phrase, we 
first identify the main data regions of training web sites to determine the area of data extraction. 
Secondly, we choose multiple base classifiers to build models. The second one is extraction phrase. 
In this phrase, we first use every trained model on testing set to obtain every classification result. 
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Secondly, we use the voting method to integrate these classification results, and then combine the 
integration results with heuristic rules to get the final extraction results.  

Main Region Identification 

A Web page contains a lot of data regions, but not all data regions are required by the user. 
Therefore, we must determine the data extraction region at first. In this paper, we define region 
node as non-leaf node of the DOM tree, and then set three parameters: linkCharacterNum, 
characterNum, linkDensity. The linkCharacterNum is used to record the number of hyperlink text 
characters of each region node. The characterNum is used to record the number of all text 
characters of each region node. The linkDensity is used to record the proportion of hyperlink text 
characters of each region node, which is shown in equation (1). 

 
linkDensity=linkCharacterNum/characterNum                                                 (1) 

 
We have observed 100 web pages from different websites and find that in the data region 

required by the user, its linkDensity is always less than 0.5. So in this paper we call the data region 
whose linkDensity is smaller than a threshold as the main region. According to our observation, we 
set the threshold to be 0.5. The main region is the concern of web data extraction system. 

Model Construction 

Base Classifier. In this paper, we select three base classifiers to create the classification model: 
SVM、KNN and Random Forest. 

SVM[8] 
SVM is the abbreviation of Support Vector Machine which can be used for classification. It 

belongs to a family of generalized linear classification. SVM can simultaneously minimize the 
empirical classification error and maximize the geometric margin. SVM maps input vector to a 
higher dimensional space where a maximal separating hyperplane is constructed. Two parallel 
hyperplanes are constructed on each side of the hyperplane that separate the data. The separating 
hyperplane maximizes the distance between the two parallel hyperplanes. 

KNN[9] 
KNN (k-Nearest Neighbor, KNN) is a classification algorithm based on distance measure. A 

sample is classified by a majority vote of its neighbors, with the sample being assigned to the class 
most common among its k nearest neighbors (k is a positive integer, typically small). In this 
experiment, we set k=1, that is to say, the sample is assigned to the class of that single nearest 
neighbor. 

Random Forest[10] 
Random Forest builds a forest containing a lot of decision trees randomly, and each decision tree 

has no correlation with each other. When a new sample is inputted, each decision tree in the forest 
will judge the sample, give their classification results and choose the classification having the most 
votes as the final classification result of the new sample. 

Classifier Integration. In the previous section, we introduce three base classifiers. However, a 
single base classifier has its shortcomings in performance. In order to improve the accuracy of data 
extraction, we use the voting method [11] to combine these three classifiers to obtain the final result. 
The common voting methods include majority voting, one-vote veto, minimum voting, etc. In this 
paper, we use majority voting. 

Result Combination. The output categories of each attribute contain three types: the first one is 
the attribute name (denoted as [attribute]-an), the second one is the attribute value (denoted as 
[attribute]-av) and the third one is the attribute value and name (denoted as [attribute]-nv), where 
[attribute] represents any attribute; the other one is that the attribute name and attribute value are in 
one text node. For the first situation, we can directly combine the values with the same catetory 
“[attribute]-av” as the final extraction result of this attribute. For the second situation, we first 
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separate its value into attribute name and attribute value according to some heuristic characteristics, 
then combine this value with the adjacent values having the same category “[attribute]-av” and 
regard the combination value as this attribute’s final extraction result.  

Feature Set. In this paper, we use three kinds of features for a text node: 

(1)Own features. They include whether it contains numbers, whether it contains special 
characters (for example, ¥, :) and the length of text node. 

(2)Path features. They include the path information of text node. 
(3)Contextual features. They include the information of the adjacent previous text node and the 

adjacent next text node. And this information is composed of the own features of the text node. 

Experiments 

Dataset 

In this paper, the training set is collected from 20 websites with different structures. On each 
website we collect 40 pages. The validation set and testing set are also collected from these 20 
websites. On each website we collect 10 pages. We extract 21 kinds of attributes. Each attribute 
contains three types of category: “[attribute]-an”, “[attribute]-av” and “[attribute]-nv”. 

Evaluation Criteria 

We measure the extraction performance via three metrics: precision, recall and F1. A brief 
definition is given as follows. 

Defining m as the existing total number of attributes, t as the number of attributes which are 
correctly extracted, n as the number of attributes which are wrongly labeled. Then the evaluation 
criteria is defined as follows: P=t/(t+n), R=t/m, F1=2PR/(P+R),where P is precision representing 
the confidence of the results, R is recall representing the coverage of correct results, F1 is the result 
of considering P with R together. As every attribute has its F1, for simplicity, we only use average 
F1 of all attributes to evaluate the experiment in this paper. 

Discussion on Experimental Results 

We have designed two experiments to evaluate the effects of our approach. In these experiments, 
the base classifier Random Forest is abbreviated as RF. 

(1)Performance Comparison between Single Base Classifier and Our Approach 
In this experiment, we compare the extraction performance of single base classifier with our 

approach. The result is shown in Fig. 1. 

 
Fig. 1: Average F1 using Single Base Classifiers and Our Approach 

In Fig. 1, the average F1 of single base classifiers SVM、KNN and Random Forest are 

94.52%、94.59% and 94.61% respectively. The average F1 of ensemble classifier is 94.81%. The 
result suggests the extraction performance of our approach outperforms that of any single base 
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classifier. This is because although each single base classifier has its own advantages and 
disadvantages, our approach can utilize complementary information among multiple base classifiers 
and achieve the best performance.  

(2) Effect of Changing the Size of Training Set 
In this experiment, we test the influence of training set size on the extraction results. There are 20 

websites with different structures in training set. From each website, we randomly select the pages 
whose size is from 5 to 40 with step size 5 to derive different training sets. The experimental result 
is shown in Fig. 2. 

 

 
Fig. 2: Average F1 using different size of training sets 

In Fig. 2, we can see that when increasing the size of the training set, a gradual improvement in 
average F1 is obtained. It can also be seen from Fig. 2, when the size of training set is 500, the 
average F1 is close to its maximum. Thus, our method only needs labelling a few pages to achieve 
better extraction performance and it can be applied to large-scale Web data extraction. 

Conclusion 

In this paper, we combine multiple classifiers to extract Web data. Firstly, we clean the Web page, 
and build the feature set of text nodes in the main regions. Secondly, we choose three base 
classifiers and use feature set to construct classification models respectively. Then, we use voting 
method to integrate classification results of each base classifier model. Finally, we use heuristic 
method to get the final extraction results. The experiments prove that the extraction performance of 
our approach is better than that of each base classifier.  

The text nodes in this paper all contain one attribute. However, the structure of Webpage is 
complex. Many text nodes contain multiple attributes. Therefore, we will further study the problems 
that the single text node contains multiple attributes in the future work. 
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