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Abstract

A measure of knowledge may be viewed as a dual measure of entropy in a fuzzy system; thus, it appears that the
less entropy may always accompany the greater amount of knowledge. In this paper, we propose a novel measure of
knowledge for an intuitionistic fuzzy set (IFS) through an axiomatic approach. We investigate the effectiveness of the
proposed knowledge measure through some comparative studies with some existing entropy measures and knowledge
measures of IFS. We also introduce one parametric generalized version of this knowledge measure. This paper also
provides application of the proposed knowledge measures in multi-attribute decision-making (MADM). We also give
two characterization results to obtain a general framework for defining new knowledge measures. Further, similarity
and dissimilarity measures may also be viewed as dual concepts to deal with the problems related to pattern recog-
nition. In this paper, we provide an accuracy measure of an intuitionistic fuzzy set relative to a given intuitionistic
fuzzy set. The proposed accuracy measure seems to serve as an effective alternative to similarity and dissimilarity
measures in some pattern recognition problems. We also give proof of some properties related to accuracy measure.
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1. Introduction

There are many concepts in real life which comprise
vague and imprecise information. Zadeh’s 1 idea of fuzzi-
ness provided the quantified approach to deal with this
vagueness and imprecision. The representation of vague-
ness associated with a member of universe of discourse
was done in terms of degree of membership. Atanassov 2-
4 generalized the Zadeh’s notion of fuzzy set. Atanassov
2 added a degree of non-membership with each member
of the universe of discourse. The theoretical extension of
fuzzy sets to intuitionistic fuzzy sets (IFSs) had not been
a difficult job. However, the pragmatic aspect of IFS had
been sought and justified by various authors in the last

three decades. It had been quite crucial that how the as-
sociation of non-membership degree with an element of
the universe of discourse finds its significance in real life
problems? We can give the answer of this question as fol-
lows:
Consider the case of the bird flu and an expert thinks
that this type of flu is found in migratory and resident
birds. The expert assigns a degree of association of the
bird flu to migratory birds and resident birds as 0.6 and
0.4 respectively. In this case, the expert has also con-
sidered birds who have never developed the bird flu to
both the above mentioned categories. Therefore, for more
accurate results the categories migratory birds and resi-
dent birds must be provided with degree of membership
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and degree of non-membership to the bird flu case. In
this situation, suppose degree of membership and non-
membership of migratory birds is 0.55 and 0.34 respec-
tively then the value 1-0.55-0.34 = 0.11 accounts for
those migratory birds among which the bird flu had never
been observed. In IFS terminology the value 1 - (mem-
bership) - (non-membership) is called hesitation degree
or hesitation margin (indeterminacy degree). Thus, IFSs
theory seems to provide deep insight into vague and im-
precise data.
De-Luca Termini 5 introduced an axiomatic definition of
fuzzy entropy. Yager 6 obtained fuzzy entropy from dis-
tance between the fuzzy set and its complement. Since
then, lots of work has been done by the researchers for
generalization of fuzzy sets and its applications 7-25. In
this paper, first, we deal with the amount of knowledge
associated with an IFS. In particular, the knowledge mea-
sure may be used to tackle some problems in artificial in-
telligence which may be difficult to handle by using fuzzy
entropy alone, such as making the distinction between the
cases in which there are a large number of arguments in
favor but an equally large number of arguments are not in
favor at the same time.
Intuitively, the entropy of an intuitionistic fuzzy set is
conceived as a dual measure of the amount of knowl-
edge contained in the intuitionistic fuzzy set. In decision-
making problems, the entropy of intuitionistic fuzzy set
may not be a satisfactory measure of knowledge (Szmidt
et al.19, Szmidt and Kacprzyk 26). Szmidt et al.27 pointed
out that fuzziness does not consider the peculiarities
of how the fuzziness is distributed. Consider the two
situations: first, when membership function and non-
membership function are both equal to 0.5 and the sec-
ond situation, when the membership function and non-
membership function are both equal to 0. In both sit-
uations, intuitionistic fuzzy entropy assumes maximum
value (equal to 1). However, from the pragmatic point of
view, these two situations are clearly different. The exist-
ing entropy measures of IFS fails to capture this unique
feature of IFS.To handle these situations, Szmidt et al.27

proposed a measure of knowledge for an intuitionistic
fuzzy set which may be considered as a dual measure
of intuitionistic fuzzy entropy. This measure claimed to
capture some additional features which might be useful
in decision-making problems. In the context of IFSs,
Szmidt et al. 27, Guo and Song 29, Guo 28 developed

knowledge measures to capture some interesting features
of IFSs. They also showed the effectiveness and appli-
cations of their knowledge measure in 29,28 and 27. The
linguistic hedges are the essential features of fuzzy and
intuitionistic fuzzy theory. The linguistic hedge argu-
ment explains the effectiveness of an entropy or a knowl-
edge measure (more detail in section 4). Depending on
the hesitation degree, different knowledge measures are
suitable for different situations. Guo 28 showed the ef-
fectiveness of his knowledge measure from the aspect of
structured linguistic variables (linguistic hedges) in the
IFS having high hesitation degree. However, it is not so
effective for IFS having small hesitation degree. The en-
tropy measure and the knowledge measure are conceptu-
ally dual to each other. But in intuitionistic fuzzy rou-
tine, a knowledge measure is not the hard complement
of entropy measure and vice-versa. Therefore, a problem
dealt with entropy measure alone apprehend to miss out
some intriguing features of IFS. Thus, a problem with
uncertain dataset(s) handeled by both, knowledge mea-
sure and entropy measure arguably seems to augment the
knowledge base of expert system in vague environment.
Consequently, better solutions to optimization problems
may be obtained. These facts motivated us to obtain a
general framework for defining the knowledge measure
of IFS for different situations. In particular, we propose
a novel knowledge measure for IFS and study its appli-
cation in MADM problems. Furthermore, we obtain a
one parametric generalization of the proposed knowledge
measure. The generalized knowledge measure provides
the flexibility of application and the parameter α may be
considered as a sensitivity parameter to detect the adap-
tive changes.
Similarity and dissimilarity are important concepts asso-
ciated with two data sets. These are very helpful in prob-
lems related to pattern recognition. Since fuzzy methods
are adaptive and provide soft solutions to real life prob-
lems, therefore the notions of similarity and dissimilarity
have been extended to fuzzy sets and intuitionistic fuzzy
sets by many researchers and lots of similarity and dis-
similarity have been put forward (refer 7,12,13,15,16,30-36

and the references therein). Wu et al. 37 investigated the
similarity measure models and algorithms for hierarchi-
cal case based reasoning (CBR). They developed a sim-
ilarity evaluation model for hierarchical case (HC) trees
by aggregating conceptual similarity and the value sim-
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ilarity of two HC-trees. The effectiveness of the hier-
archical case similarity evaluation model had also been
demonstrated with the help of illustrative examples. Wu
et al. 38 developed a recommender system to recommend
a suitable e-learning activity to a learner according to his
profile and requirements. In their study, they proposed
a fuzzy category similarity measure to evaluate the se-
mantic similarity between learning activities/learner pro-
file. In this study, when a subtree is matched to a tar-
get tree then an asymmetric similarity measure is desir-
able. Our proposed accuracy measure between two IFSs
may be qualified to be an asymmetric similarity mea-
sure. Zhang et al. 39 presented a hybrid similarity mea-
sure method for analysis of patent portfolios. In this
model categorical similarity of international patent clas-
sifications (IPCs) and the semantic similarity of textual
elements have been fused to obtain a hybrid similarity
measure. Zhang et al. 39 also presented a case study of
firms in China’s medical device industry using the pro-
posed hybrid similarity measure. Due to ever widening
multiple perspectives in Science, Technology and Innova-
tions (ST &I), the Technological Roadmapping (TRM) is
an essential process for research and development, plan-
ning and strategic management. The analysis of ST &I
data plays an instrumental role in augmenting the capa-
bilities of domain experts while dealing with real world
problems. Zhang et al. 40 utilized similarity measures
for topical analysis of Science, Technology and Innova-
tions. Boran and Akay 7 analysed some existing simi-
larity measures for an intuitionistic fuzzy set along with
some counter-intuitive cases. Xiao et al. 41 presented de-
tail analysis of existing distance measures of intuition-
istic fuzzy sets along with their counter-intuitive cases.
Xiao et al. 41 also introduced an intuitive distance mea-
sure for intuitionistic fuzzy sets and discussed its appli-
cation in pattern recognition. Since similarity and dissim-
ilarity are dual concepts. Therefore, both concepts have
been equally applied to pattern recognition problems by
many researchers. We have observed the following re-
search gaps in the previous studies.

• In all the earlier studies there is no asymmetric simi-
larity measure which is desirable for certain problems
(e.g. Wu et al. 37).

• Due to counter-intuitive situations one model can’t
solve all problems related to a particular class (e.g. pat-
tern recognition).

These facts motivated us to develop asymmetric similar-
ity measure between two IFSs. Pertaining to this, we pro-
pose a measure of the accuracy of an intuitionistic fuzzy
set relative to a given intuitionistic fuzzy set. We consider
this accuracy measure as a generalization of knowledge
measure. The novelties of this paper are summarized as
follows:

• We introduce a new knowledge measure of an IFS and
demonstrate its superiority in certain situations.

• The application of knowledge measure in MADM
problem is presented.

• We propose the notion of accuracy in an IFS B rela-
tive to a given IFS A. The effectiveness of accuracy
measure is tested in pattern recognition problems. The
result shows that some similarity/dissimilarity mea-
sures are unable to differentiate some IFSs but accu-
racy measure can do so.

• The accuracy measure captures some essential features
of IFSs. So, we prove some properties of accuracy
measure.

The remainder of the paper is organized as follows:
Section 2 presents some preliminaries related to IFSs. In
Section 3, we propose a new knowledge measure and
prove some of its properties. To explore the linguistic
aspect of knowledge measure and effectiveness of knowl-
edge measure in an MADM problems, some comparative
empirical studies are presented in Section 4. In Section 5,
the application of knowledge measure is discussed in an
MADM problem with completely unknown/incomplete
criteria weights information. Section 6 introduces a gen-
eralized version of knowledge measure presented in Sec-
tion 3 and discusses its effectiveness in certain situation.
In Section 7, we prove some characterization theorems
for the knowledge measure. Section 8, provides an ax-
iomatic framework to define an accuracy measure of an
IFS B relative to a given IFS A and proof of some results
related to accuracy measure. In Section 9, we discuss
applicability and efficiency of accuracy measure in prob-
lems related to pattern recognition. Finally, Section 10
concludes and discusses scope for future research work.

2. Preliminaries

Zadeh 1 introduced the notion of fuzzy sets as follows.
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Definition 1 let X = {x1,x2, ...,xn} be a universal set,
then a fuzzy subset of universal set X is defined as

A = {(x,ξA(x))|x ∈ X},

where ξA(x) : X → [0,1] represents a membership func-
tion.The value ξA(x) describes the extent of presence of
x ∈ X in A.
Atanassov 2-4 generalized the notion of FS as follows.
Definition 2 Let X be the universe of discourse. Then
an intuitionistic fuzzy set A is represented as follow X is
given by

A = {< x,ξA(x),ηA(x)> |x ∈ X},

where ξA : X→ [0,1] and ηA : X→ [0,1] are membership
and non-membership functions subject to the condition

0 6 ξA(x)+ηA(x)6 1,

∀x ∈ X. The values ξA(x) and ηA(x) denote the extent of
belongingness and the degree of non-belongingness of x
to A, respectively. In addition for each IFS A in X if

πA(x) = 1−ξA(x)−ηA(x),

then πA(x) is called hesitancy margin/degree of x to A.

Definition 3 Let the family of all IFSs over a universe of
discourse X be IFS(X). Let A, B ∈ IFS(X) are
A = {(x,ξA(xi),ηA(xi))|x ∈ X},
B = {(x,ξB(xi),ηB(xi))|x ∈ X},
and the operations defined on IFS(X) are given, for every
x ∈ X , as:

• A ⊆ B if and only if ξA(xi) 6 ξB(xi) and ηA(xi) >
ξB(xi);

• A=B if and only if A⊆ B and B⊆ A;

• Ac = {(x,ηA(xi),ξA(xi))|x ∈ X};
• A∪B = {(x,ξA(xi)∨ξB(xi),ηA(xi)∧ηB(xi))};
• A∩B = {(x,ξA(xi)∧ξB(xi),ηA(xi)∨ηB(xi))};

Szmidt and Kacprzyk 19 proposed the axiomatic defini-
tion of entropy of IFS as follows.
Definition 4 An entropy on IFS(X) is a real-valued func-
tion E:IFS(X)→ [0,1], satisfying the following four ax-
ioms.

(P1) E(A)=0 iff A is a crisp set; that is, ξA(xi)= 0,
ηA(xi)= 1 or ξA(xi)= 1, ηA(xi) = 0 for all xi ∈ X,

(P2) E(A)=1 iff ξA(xi) = ηA(xi) for all xi ∈ X,

(P3) E(A)6 E(B) iff A⊆B, that is, if ξA(xi) 6 ξB(xi)

and ηA(xi), > ηB(xi), for ξB(xi) 6 ηB(xi), or if
ξA(xi) > ξB(xi) and ηA(xi) 6 ηB(xi), for ξB(xi) >
ηB(xi) for any xi ∈ X,

(P4) E(A)= E(AC).

Montes et al. 42 proposed the following definition of di-
vergence measure between two IFSs.
Definition 5 let X be a finite universe, and let IFS(X) de-
note the set of all intuitionistic fuzzy sets on X. A map
DIF : IFS(X)× IFS(X) → ℜ is a divergence measure
for IFs if for every A,B ∈ IFS(X) it fulfills the following
properties:

(D1) DIF(A,B) = DIF(B,A),

(D2) DIF(A,A) = 0,

(D3) DIF(A∩C,B∩C)6 DIF(A,B),

(D4) DIF(A∪C,B∪C)6 DIF(A,B).

Dengfeng and Cheng 13 introduced the following defini-
tion of intuitionistic fuzzy similarity measure.
Definition 6 A function S : IFS(X)× IFS(X)→ [0,1] is
called a similarity measure, if S has the following prop-
erties:

(SM1) S(A,B)=S(B,A), ∀A,B ∈ IFS(X),

(SM2) S(A,B)=1, i f f A = B,

(SM3) 0 6S(A,B) 6 1 ∀ A,B ∈ IFS(X),

(SM4) ∀ A,B,C ∈ IFS(X), if A⊂ B⊂ C, then S(A,B)>
S(A,C) and S(B, C) > S(A, C).

Guo28 proposed the following axiomatic definition of
IFS’ knowledge measure.
Definition 7 A mapping K : IFS(X) → [0, 1] is called
a knowledge measure on AIFS(X), if K has the following
properties:

(KPAIFS1) K(A) = 1 iff A is a crisp set;

(KPAIFS2) K(A) = 0 iff πA(xi) = 1 ∀xi ∈ X;

(KPAIFS3) K(A)> K(B) if A is less fuzzy than B, i.e.,
A ⊆ B for ξB(xi) 6 ηB(xi) ∀xi ∈ X or A ⊇ B for
ξB(xi) > ηB(xi) ∀xi ∈ X,

(KPAIFS4) K(Ac) = K(A).
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For example, the following two knowledge measures sat-
isfies the axiomatic requirements of a knowledge mea-
sure.

K(x) =
1
n

n

∑
i=1

(1−0.5[E(xi)+π(xi)]). (1)

(Szmidt et al.27)

KG(A) = 1−2n
n

∑
i=1

(1−|ξA(xi)−ηA(xi)|)

(1+πA(xi)). (2)

(Guo 28)
In the next section, we propose a new knowledge mea-
sure of an intuitionistic fuzzy set A and study some of its
properties.

3. Novel knowledge measure of IFS

Let A ∈ IFS(X), then we propose the following measure
of knowledge in the IFS A

K(A) =
1
n

n

∑
i=1

(ξ 2
A(xi)+η

2
A(xi)). (3)

First, we establish that (3) is a valid knowledge measure
and then we prove its valuation property.
Theorem 1 K(A) is a valid knowledge measure.
Proof We prove the axiomatic requirements (KPAIFS1−
KPAIFS4).

(KPAIFS1) Let A be a crisp set. This implies ξA(xi) = 1
or ηA(xi) = 1 ∀ xi ∈ X ; thus K(A) = 1. On the other
hand, let K(A) = 1 then

K(A) =
1
n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)]

⇒ 1 =
1
n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)].

which means ξA(xi) = 1 or ηA(xi) = 1 ∀ xi ∈ X and
thus A is a crisp set.

(KPAIFS2) Let πA(xi)= 1 ∀ xi ∈X . This implies ξA(xi)=

ηA(xi) = 0 ∀ xi ∈ X ; thus K(A) = 0. On the other
hand, let K(A) = 0 further algebraic manipulation
lead to 1

n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)] = 0

⇒ ξ
2
A(xi)+η

2
A(xi) = 0. (4)

Now, ξA(xi) > 0,ηA(xi) > 0. Therefore, Eq.(4)
yields ξA(xi = ηA(xi) = 0 ∀ xi ∈ X . But then
πA(xi) = 1.

(KPAIFS3) We empirically test the axiom (KPAIFS3) for
K(A), by generation of IFSs satisfying the con-
ditions ξA(xi) 6 ξB(xi) 6 ηB(xi) 6 ηA(xi) and
ξA(xi) > ξB(xi) > ηB(xi) > ηA(xi) . In both the
situations we observe that K(A)> K(B).

(KPAIFS4) Follows from the definition of Ac.

Theorem 2 Let K(A) and K(B) be knowledge measures
of IFSs A and B respectively. Then

K(A∪B)+K(A∩B) = K(A)+K(B).

Proof We consider two cases.
Case1 First we consider the case when ξA(xi) >

ξB(xi)> ηB(xi)> ηA(xi), 1 6 i 6 n. We have
K(A∪B)+K(A∩B)

=
1
n

n

∑
i=1

[ξ 2
A∪B(xi)+η

2
A∪B(xi)]+

1
n

n

∑
i=1

[ξ 2
A∩B(xi)+

η
2
A∩B(xi)]

=
1
n

n

∑
i=1

(ξA∪B(xi))
2 +

1
n

n

∑
i=1

(ηA∪B(xi))
2 +

1
n

n

∑
i=1

(ξA∩B(xi))
2 +

1
n

n

∑
i=1

(ηA∩B(xi))
2

=
1
n

n

∑
i=1

(ξA(xi)∨ξB(xi))
2 +

1
n

n

∑
i=1

(ηA(xi)∧ηB(xi))
2 +

1
n

n

∑
i=1

(ξA(xi)∧ξB(xi))
2 +

1
n

n

∑
i=1

(ηA(xi)∨ηB(xi))
2

=
1
n

n

∑
i=1

(ξ 2
A(xi)+η

2
A(xi))+

1
n

n

∑
i=1

(ξ 2
B(xi)+η

2
B(xi))

= K(A)+K(B).

Case2 Now, we consider the case when ξA(xi)6 ξB(xi)6
ηB(xi)6 ηA(xi), 1 6 i 6 n.
By following the similar steps as in Case1, we get K(A∪
B)+K(A∩B) = K(A)+K(B).
Hence, the proof follows.

4. Comparative studies

In this section, we present some comparative studies of
knowledge measure (3). In subsection 4.1, we investigate

1342

 
___________________________________________________________________________________________________________

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1338-1356



/

the performance of (3) from the point of view of struc-
tural linguistic variables. We also compare the results
with some entropies of an intuitionistic fuzzy set and two
existing knowledge measures. Then in subsection 4.2, we
investigate the effectiveness of K(A) in a MADM prob-
lem and compare the results with Mao 43’s intuitionistic
fuzzy entropy method.

4.1. Effectiveness of new knowledge measure in
structured linguistic framework

First, we examine the performance of our developed mea-
sure with the help of example given below (adapted from
Hung and Yang 11 and Guo 28).
Example 1 Let A = 〈x,ξA(x),ηA(x)〉|x ∈ X be an IFS in
X. De et al. 44 defined an IFS Am, where m is any real
number which is given by

Am = {〈x,(ξA(x))m,1− (1−ηA(x))m〉|x ∈ X}.

1) Let A be an IFS in X = {6, 7, 8, 9, 10}, which is given
by

A = {〈6,0.1,0.8〉,〈7,0.3,0.5〉,〈8,0.6,0.2〉,
〈9,0.9,0.0〉,〈10,1.0,0.0〉} .

Now, by using the above operation, we generate IFSs
pertaining to A which are given below:

A0.5 = {〈6,0.316,0.553〉,〈7,0.548,0.293〉,
〈8,0.775,0.106〉,〈9,0.949,0.0〉,
〈10,1.0,0.0〉} ;

A2 = {〈6,0.010,0.960〉,〈7,0.090,0.750〉,
〈8,0.360,0.360〉, 〈9,0.810,0.0〉,
〈10,1.0,0.0〉} ;

A3 = {〈6,0.001,0.992〉,〈7,0.027,0.875〉,
〈8,0.216,0.488〉, 〈9,0.729,0.0〉,
〈10,1.0,0.0〉} ;

and

A4 = {〈6,0.000,0.998〉,〈7,0.008,0.938〉,
〈8,0.130,0.590〉, 〈9,0.656,0.0〉,
〈10,1.0,0.0〉} .

De et al. 44 regarded A as LARGE in X by considering
the characterization of linguistic variables. In the same
way,
linguistic equivalent of A0.5 is More or less LARGE,
A2 is Very LARGE,
A3 is Quite very LARGE, and
A4 is Very very LARGE.
Now by taking into account the mathematical operations,
the entropy of these IFS should have the following order:

Entropy(A0.5)> Entropy(A)> Entropy(A2)>

Entropy(A3)> Entropy(A4). (5)

Now, from structured linguistic point of view knowledge
measure of IFS should follow the order:

K(A0.5)< K(A)< K(A2)< K(A3)< K(A4). (6)

In this section, we consider three entropies Esk,Eldl ,Ez j,
the knowledge measures Kskb,KAIFS and the proposed
knowledge measure K(A). Each knowledge measure is
suitable in some situation. We investigate the suitability
of knowledge measures based on the hesitation margin.
We examine the performance of knowledge measure (3)
with these IFSs and interpret the results in the sense of
the amount of knowledge associated with them. We also
compare our knowledge-based results with the entropy of
these IFSs, with the aim of showing the effectiveness of
considered measure. The comparative results are shown
in Table1.

From Table1, we observe that requirement (5) is sat-
isfied by all entropies and requirement (6) is satisfied by
Guo 28’s knowledge measure. Now, on reducing the hes-
itation margin in set A, we obtain set B i.e.

B = {〈6,0.1,0.8〉,〈7,0.3,0.5〉,〈8,0.5,0.4〉,
〈9,0.9,0.0〉,〈10,1.0,0.0〉} .

and construct Table 2.
From Table 2, we observe that requirement (5) is sat-

isfied by all entropies and requirement (6) is not satisfied
by any of the knowledge measure.
If we further reduce the hesitation margin, we obtain set
C i.e.

C = {〈6,0.1,0.8〉,〈7,0.3,0.5〉,〈8,0.5,0.5〉,
〈9,0.9,0.0〉,〈10,1.0,0.0〉} .
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Table 1. Comparative results by different models for IFSs pertaining to
A

IFSs Entropy Entropy Entropy Knowledge Knowledge Knowledge

Esk
19 Eldl

14 Ez j
23 Kskb

27 KAIFS
28 K(A)

A0.5 0.319 0.471 0.249 0.794 0.785 0.668056

A 0.307 0.466 0.212 0.786 0.788 0.64

A2 0.301 0.390 0.266 0.783 0.805 0.68152

A3 0.212 0.317 0.095 0.827 0.854 0.713332

A4 0.176 0.278 0.046 0.844 0.877 0.732496

Table 2. Comparative results by different models for IFSS pertaining to
B

IFSs Entropy Entropy Entropy Knowledge Knowledge Knowledge
Esk

19 Eldl
14 Ez j

23 Kskb
27 KAIFS

28 K(A)
B0.5 0.345 0.508 0.285 0.787 0.767 0.6485786
B 0.374 0.502 0.305 0.763 0.761 0.642
B2 0.197 0.345 0.104 0.852 0.865 0.7241
B3 0.131 0.352 0.038 0.888 0.911 0.7824282
B4 0.109 0.200 0.016 0.899 0.926 0.8133984

Table 3. Comparative results by different models for IFSS pertaining to
C

IFSs Entropy Entropy Entropy Knowledge Knowledge Knowledge
Esk

19 Eldl
14 Ez j

23 Kskb
27 KAIFS

28 K(A)
C0.5 0.352 0.519 0.304 0.790 0.763 0.6556234
C 0.407 0.512 0.345 0.756 0.760 0.66
C2 0.168 0.328 0.093 0.878 0.883 0.75468
C3 0.110 0.229 0.035 0.907 0.923 0.812622
C4 0.095 0.179 0.015 0.913 0.934 0.8379872

and construct Table 3.

From Table 3, we observe that the preference order
(6) is satisfied by the newly proposed knowledge mea-
sure. The comparative results are shown in Table 3. Sim-
ilarly, there is still the greater entropy for the IFS B in
Table 3, from which it is clear that the measures Esk ,
Ez j , Kskb, and our developed model K(A) are doing well
this time. In summary, remarkable among the entropy
above is the measure Esk that clearly out performs the
other ones throughout the process. As far as the knowl-
edge measurement models are concerned, our developed
knowledge measure K(A) is doing better throughout the
process . Therefore, the model K(A) may be considered
to employ in some situations may be theoretical or prac-
tical.

4.2. Effectiveness of new knowledge measure in
multiple-attribute decision-making

We examine the performance of the new knowledge mea-
sure with the help of example adapted from section 5.2 of
Mao et al. 43.
Example 2 An investment company plans to invest
some money in the best fund. Five possible funds
(x1,x2,x3,x4 and x5) satisfies requirements under four
attributes (a1,a2,a3 and a4), in order to choose the best
fund, the company makes some evaluations for these
funds. The results have been given using intuitionistic
fuzzy sets in Table 5 of Mao et al. 43. Under the condi-
tion that attributes are benefit type. The weight associated
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with attribute a j is given by

Wj =
1−E(a j)

∑
4
k=1(1−E(ak))

, (1 6 j 6 4); (7)

where E(a j) = ∑
5
i=1 E(xi,a j), and E(xi,a j)= Intuition-

istic fuzzy entropy of every object under each attribute.
The score function for each alternative is given by

S(xi) =
4

∑
j=1

(ξ (xi,a j)−η(xi,a j))×Wi, (1 6 i 6 5);

(8)

where ξ (xi,a j),η(xi,a j) represent the membership and
non-membership degree of object xi under attribute a j.
Since, the knowledge measure is considered as a dual of
entropy of intuitionistic fuzzy set. Therefore, in the con-
text of study of knowledge measure we can modify Eq.
(7) as follows

Wj =
K(a j)

∑
4
k=1 K(ak)

, j = 1,2,3,4. (9)

Using the data of Table 5 of Mao et al. 43 and by using
(11) the weights of alternatives x1,x2,x3,x4 and x5 are
as follows

W = {0.3186682521,0.2068965517,

0.2366230678,0.2378121284}.

Consequently, using (8) we obtain scores of alternatives
x1,x2,x3,x4,x5 as follows :
S(x1) = 0.4141, S(x2) = 0.3316, S(x3) = 0.2031, S(x4) =

0.4039 and S(x5) = 0.3377.
Here, we have S(x1)> S(x4)> S(x5)> S(x2)> S(x3).
The preference order of five alternative is completely in
agreement with the results obtained in Mao et al. 43.
Therefore, the measure (3) is effective in the problems
of multi-attribute decision-making. In the next section,
we apply K(A) in a MADM problem, with complete and
partial information of weights.

5. A knowledge measure based approach for
MADM problem

Problem Formulation: Let A = {a1,a2, ...,an} be the
set of n-attributes, X = {x1,x2, ...,xm} be the set of m-
alternatives and W = {w1,w2, ...,wn}, where w j ∈ [0,1]
be the weight vector of attributes which is not predefined.

Suppose IFS ai j = (ξi j,ηi j) denote the expert’s assess-
ment corresponds to the jth attribute a j ( j = 1,2, ...,n) to
evaluate ith alternative xi, i = 1,2, ...,m.
The decision matrix corresponding to above mentioned
situations is as follows:

M =



a1 a2 . . . an

x1 a11 a12 . . . a1n
x2 a21 a22 . . . a2n
. . . . . . .
. . . . . . .
. . . . . . .

xm am1 am2 . . . amn


We discuss the problem of MADM in two situations.
One, when weights of attributes are completely unknown
and secondly, when we have partial information about
weights of attributes.

5.1. A MADM model based on knowledge measure
when there is no information about weights

The main steps of the model are as follows:

Step 1 Let

M = [ai j]n×m (10)

be the intuitionistic fuzzy decision matrix (as de-
scribed in the problem statement). Consequently,
our proposed knowledge measure takes the form

K(a j) =
1
m

m

∑
i=1

(ξ 2
i j +η

2
i j); j = 1,2, ...,n.

(11)

Step 2 The weights associated with attribute a j can be
obtained using equation (9).

Step 3 After evaluating the weights of attributes, the
weighted aggregated values for each alternative are
obtained by the weighted intuitionistic fuzzy arith-
metic mean operator 48 as follows:

Si = S(xi) = (1−
n

∏
j=1

(1−ξai j)
w j ,

n

∏
j=1

η
w j
ai j )

(12)

= (ξi,ηi)(say). (13)
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Step 4 Finally, to rank the alternative we compute the
score of each alternative as follows 45:

Score(Si) = ξi−ηi; i = 1,2, ...,m.

(14)

Example 3 43Consider the case of five alternatives with
four attributes. Let the decision matrix be M=



a1 a2 a3 a4

x1 (0.7,0.2) (0.5,0.3) (0.6,0.1) (0.6,0.2)
x2 (0.7,0.3) (0.5,0.2) (0.7,0.2) (0.4,0.5)
x3 (0.6,0.4) (0.5,0.4) (0.5,0.3) (0.6,0.3)
x4 (0.8,0.1) (0.6,0.3) (0.3,0.4) (0.6,0.2)
x5 (0.6,0.2) (0.4,0.3) (0.7,0.1) (0.5,0.3)
.


Step 1 We obtain the knowledge associated with each

attribute using (11).
K(a1) = 0.536,K(a2) = 0.348,K(a3) =

0.398,K(a4) = 0.4.

Step 2 We calculate the weights of attributes using (9).
w1 = 0.3186682521,w2 = 0.2068965517,w3 =

0.2366230678,w4 = 0.2378121284

Step 3 We compute weighted aggregated value of each
alternative using (12). We obtain the values
S1 = (0.382205,0.1846),
S2 = (0.393196,0.282996),
S3 = (0.441613,0.348967) and
S4 = (0.366134,0.205478).

Step 4 We obtain score of alternatives by using (13).
Score(S1) = 0.197605,
Score(S2) = 0.110201,
Score(S3) = 0.92645,
Score(S4) = 0.160656
and Score(S5) = 0.225238 .

The preference order in this case is
S5 > S1 > S4 > S2 > S3.
Hence x5 has maximum score. Therefore, it is the best
alternative.

5.2. Knowledge measure based MADM model when
partial information regarding attribute weights is
available.

In the problems related to MADM, the determination of
attribute weight is very important. In real life situations,

we also come across certain problems in which partially
information regarding attribute weights is available. That
is, for the weight vector W = (w1,w2, ...,wn), some con-
straints are given.
To compute the weights of attributes in such a case, we
use the principle of maximum information as a dual to
principle of minimum entropy suggested by Wang and
Wang 47. We suggest a method to compute the attribute
weight vector by means of proposed Intuitionistic fuzzy
knowledge measure. The greater the knowledge measure,
the greater in the intuitionistic fuzzy degree of attribute
assessment information. Hence, we use the maximum
knowledge principle for obtaining the weight vector of
attribute by solving the following programming model.

Step 1 The knowledge based decision matrix Mk =

(Ki j)m×n is derived from the decision matrix M.
First we compute the knowledge matrix.

Mk =



a1 a2 . . . an

x1 K11 K12 . . . K1n
x2 K21 K21 . . . K2n
. . . . . . .
. . . . . . .
. . . . . . .

xm Km1 Km2 . . . Kmn


where

Ki j = K(ai j)

= ξ
2
i j +η

2
i j.

Step 2 We consider each alternative in a fair competitive
environment, the weight coefficient with respect to
the same attribute must be equal. Let H be the set
of partial information about attribute weights. To
obtain the optimal weight we construct the follow-
ing linear programming model:

Max.KW =
n

∑
j=1

m

∑
i=1

Ki jw j

subject to

m

∑
j=1

w j = 1, (15)

Solving (15) among with all constraints given in H,
we get optimal solution

W = (w1,w2, ...,wn)
T . (16)
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Step 3 By using (12), we obtain the weighted aggregated
score function.

Step 4 By using (14), we obtain scores.

Example 4 Consider the intuitionistic fuzzy decision ma-
trix given in example 3.

Step 1 We obtain the knowledge based matrix as follows
:

Mk =



a1 a2 a3 a4

x1 0.53 0.34 0.37 0.4
x2 0.58 0.29 0.29 0.41
x3 0.52 0.4 0.34 0.45
x4 0.65 0.45 0.25 0.4
x5 0.4 0.25 0.5 0.34


Step 2 Let the partial information regarding attributes

weight is given by the set H as follow:
H = {0.25 6 w1 6 0.75,0.35 6 w2 6 0.60,0.30 6
w3 6 0.35,0.40 6 w4 6 0.45,w1 +w2 +w3 +w4 =

1}.

Now, by using the model we have

Max.KW = 2.68w1 +1.73w2 +1.75w3 +2w4

subject to W ∈ H.
w j > 0, j = 1,2,3,4.
Solving this model using MATLAB, we get
w1 = 0.25, w2 = 0.35, w3 = 0.30 and w4 = 0.45.

Step 3 We obtain the weighted aggregated scores as fol-
lows:
S1 = (0.292055,0.106589),
S2 = (0.321532,0.190321),
S3 = (0.335562,0.233925),
S4 = (0.288692,0.135854)
and S5 = (0.339266,0.127925).

Step 4 Finally, to rank the alternatives, we determine
the score of each alternative using (16) we have
Score(S1) = 0.185466, Score(S2) = 0.131211,
Score(S3) = 0.101637, Score(S4) = 0.152838 and
Score(S5) = 0.211331.
Therefore, the preference order is
S3 > S2 > S4 > S5 > S1.
Hence x3 is best alternative.

However, the multi-attribute decision-making problem
discussed in this section can also be solved by entropy
methods under intuitionistic fuzzy environment. The
knowledge measure based approach in MADM problems
must be preferred due to following reasons.

• Less computational complexity of knowledge mea-
sure.

• In structured linguistic variables, the proposed knowl-
edge measure is more effective in an intuitionistic
fuzzy set with small hesitation margin (Section 4).

It is quite natural that in some problems the score of two
or more alternatives may be equal. To handle such prob-
lems, for obtaining a strict preference order among alter-
natives we introduce a one parametric generalization of
(3) in the next section and study its effectiveness in cer-
tain situations.

6. Generalized knowledge measure

We propose the following generalized knowledge mea-
sure

Kα(A) =
1

n(α−1)

n

∑
i=1

(ξ α(xi)+η
α(xi)), α > 1.

(17)

For α = 2, we recover K(A).
Theorem 3 Kα(A) is a valid knowledge measure.
Proof Following the same steps as in proof of theorem
1 we can prove that, Kα(A) is a valid knowledge measure.

Example 5 Consider the case of five alternatives
xi, i = 1,2,3,4,5 and four attributes a j, j = 1,2,3,4 with
the following decision table (Table4).

Table 4. Collective decision table

a1 a2 a3 a4

x1 (0.7,0.2,0.1) (0.5,0.3,0.2) (0.6,0.1,0.3) (0.6,0.2,0.2)
x2 (0.7,0.3,0.0) (0.5,0.2,0.2) (0.7,0.2,0.1) (0.4,0.5,0.1)
x3 (0.6,0.4,0.0) (0.5,0.4,0.1) (0.5,0.3,0.1) (0.6,0.3,0.1)
x4 (0.8,0.1,0.1) (0.6,0.3,0.1) (0.3,0.4,0.3) (0.6,0.2,0.2)
x5 (0.6,0.2,0.2) (0.7,0.4,0.3) (0.6,0.1,0.2) (0.2,0.3,0.2)

We construct generalized score function as follows:

Sα(xi) =
4

∑
j=1

(
√

ξ α(xi,a j)−
√

ηα(xi,a j))×W α
j ,

i = 1,2, ...,5. (18)
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where ξ (xi,a j) and η(xi,a j) are membership and non-
membership degree of object xi under attribute a j. Let,

W α
j =

Kα(a j)

∑
5
i=1 Kα(ai)

, (19)

denotes the generalized weight of attributes a j. Now we
calculate weights for different values of α by using (17)
and (19). The corresponding weight vectors are obtained
in Table 5.

Table 5. Weight vectors corresponding to various values of α

α wα
1 wα

2 wα
3 wα

4
2 0.3614 0.2526 0.2196 0.2113
1.1 0.2790 0.2631 0.2264 0.2313
1.3 0.2867 0.2618 0.2245 0.2269
1.5 0.2984 0.25985 0.2228 0.2224
1.7 0.3033 0.2572 0.2215 0.2179
1.9 0.3119 0.2542 0.2202 0.2135

Finally, we compute the score of each alternative cor-
responding to various values of α and obtain Table 6.
We observe that for α = 2 score of alternative x2 and x5

is equal and hence we are not able to obtain a strict pref-
erence. But, when we change the values of α , we obtain a
strict preference order among the alternatives. Moreover,
it is interesting to note that the best alternative in all the
cases is same i.e. x1. Therefore, generalized knowledge
measure is resolving a tie when a strict preference among
alternative is desirable.
Now, in the next section, we prove some characterization
results to obtain a general framework for defining new
knowledge measures.

7. Characterization of knowledge measure

Theorem 4 Let G : [0,1]2 → [0,∞] be a mapping. Then
the following function KIF : IFS(X)→ [0,1] defined by

KIF(A) =
1
n

n

∑
i=1

G(ξi,ηi). (∗)

satisfies axioms (KAIFS1)− (KAIFS4) if G satisfies the
following conditions:

(1) G(x,y)=0 with x+y 6 1 if and only if x=y=0,

(2) G(x,y)=1 with x+y 6 1 if and only if either x=0,
y=1 or x=1, y=0,

(3) G(x,y)=G(y,x),

(4) G(x,y)> G(z,w) if x6z6w6y or x>z>w>y.

Proof Consider KIF(A) as given in equation(*) satisfies
axioms (KAIFS1)− (KAIFS4). We show that G satisfies
(1) if G(x,y) = 0;x,y ∈ [0,1] then we can take ξi = x and
ηi = y for every i = 1,2, ...,n. Then, we have

KIF(A) =
1
n

n

∑
i=1

G(ξi,ηi) = 0.

From the axiom (KAIFS2), it can happen iff x = y = 0,
which we wanted to show.
Now suppose that G(x,y)= 1 with x+y6 1; x+y∈ [0,1].
Further, we consider the IFS given by ξi = x and ηi = y
for every i = 1,2, ...,n. This gives

KIF(A) =
1
n

n

∑
i=1

G(ξi,ηi) = 1.

From the axiom (KAIFS1) it can happen iff either x=0,
y=1 or x=1, y=0, which we wanted to show
In context of (3), suppose that there exist x,y∈ [0,1] such
that x+ y 6 1 but G(x,y) 6= G(y,x). Without loss of gen-
erality, we can assume that G(x,y) > G(y,x). Consider
the IFS A defined by ξi = x and ηi = y. Then we get

KIF(A) =
1
n

n

∑
i=1

G(ξi,ηi)>
1
n

n

∑
i=1

G(ηi,ξi)

= KIF(Ac).

which contradicts axiom (KAIFS3). Finally (4) can be
shown by a similar argument. The converse is just an
easy calculation.
Theorem 5 Let M : [0,1]2 → [0,1] be a function such
that M(x, .) : [0,1]→ [0,1] is strictly decreasing for ev-
ery x ∈ [0,1] satifying following conditions:

(a) Symmetry:M(x,y) = M(y,x),

(b) Idempotency : M(x,x) = x, ∀x ∈ [0,1],

(c) Boundary condition: M(x,0) = x.

Let f : [0,1]→ [0,1] be a mapping. Then the function
G(x,y) = M( f (x), f (y)) satisfies properties 1-4 in theo-
rem 4 if following properties holds:

(i) f (x) = 0 iff x = 0,

(ii) f (x) = 1 iff x = 1,
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Table 6. Preference orders for various values of α

α Sα
1 Sα

2 Sα
3 Sα

4 Sα
5 Pre f erence order

2.5 0.401427 0.300873 0.20052 0.370227 0.296702 S(x1)> S(x4)> S(x2)> S(x5)> S(x3)
2.3 0.403909 0.298322 0.199719 0.367647 0.295934 S(x1)> S(x4)> S(x2)> S(x5)> S(x3)
2.1 0.404051 0.293977 0.197544 0.36305 0.29322 S(x1)> S(x4)> S(x2)> S(x5)> S(x3)
2 0.42557 0.309027 0.204868 0.391358 0.309027 S(x1)> S(x4)> S(x2) = S(x5)> S(x3)
1.1 0.344604 0.231003 0.156131 0.290381 0.236164 S(x1)> S(x4)> S(x5)> S(x2)> S(x3)
1.3 0.367602 0.250657 0.169607 0.3138 0.254937 S(x1)> S(x4)> S(x5)> S(x2)> S(x3)
1.5 0.385738 0.267746 0.180808 0.334573 0.271038 S(x1)> S(x4)> S(x5)> S(x2)> S(x3)
1.7 0.394898 0.278479 0.188069 0.345909 0.280516 S(x1)> S(x4)> S(x5)> S(x2)> S(x3)
1.9 0.401279 0.287496 0.193754 0.355985 0.288214 S(x1)> S(x4)> S(x5)> S(x2)> S(x3)

(iii) f is monotonic increasing in [0,1].

Proof Given, G(x,y) = M( f (x), f (y)) satisfying property
1-4 of theorem 4. We have from property (1) of theorem
4

G(0,0) = 0

⇒ M( f (0), f (0)) = 0.

Using idempotency of M, we have

f (0) = 0.

Conversely, if possible suppose ∃ x 6= 0 such that f (x) =
0.
Then

G(x,0) = M( f (x), f (0))

= f (x) = 0.

Therefore, G(x,0) = 0 which is a contradiction to condi-
tion (1) of theorem 4. This proves (i). Now,

G(1,0) = M( f (1), f (0))

= M( f (1),0)

= f (1).

From condition (2) of theorem 4 we have,

G(1,0) = 1

⇒ f (1) = 1.

Let y0(6= 1) such that f (y0) = 1.
Then,

G(y0,0) = M( f (y0), f (0))

= M( f (y0),0)

= f (y0)

= 1.

⇒ G(y0,0) = 1 which is a contradiction to condition (2)
of theorem 4.
Therefore, f (x) = 1 i f f x = 1.
This proves (ii).
Next, let x,y ∈ [0,1].
If possible suppose that f(x) is monotonically decreasing
function in [0,1]. Therefore, we assume that x 6 y such
that f (x)> f (y).
Now, G(x,1− y) = M( f (x), f (1− y)) and G(y,1− y) =
M( f (y), f (1− y)).
Then, M( f (x), f (1− y))< M( f (y), f (1− y))
⇒ G(x,1− y)< G(y,1− y).
This contradicts condition (4) of theorem 4.
Therefore f (x) is monotonically increasing in [0,1].

8. A measure of accuracy

The amount of knowledge in an IFS A can be consid-
ered as a amount of accuracy in A. Intuitionistically, if A
is crisp then it must be absolutely accurate and value of
knowledge/accuracy may numerically be considered as 1.
Now, if A is any IFS and B is another IFS and we want to
calculate degree of accuracy in B relative to A i.e., when A
is benchmark for accuracy of B. The unorthodoxy in this
situation is that A in itself may not be accurate (crisp).
Thus, intuitionistic argument says; the amount of accu-
racy in B can be maximum when A and B both are crisp
sets and ξA(xi) = ηA(xi), ξB(xi) = ηB(xi). Otherwise, it
can attain as much accuracy as that of A when A = B.
The accuracy in B relative to A is zero if we have no
knowledge about of A (i.e., ξA(xi) = ηA(xi) = 0). This
type of measure of accuracy of B relative to A is clearly
different from measure of similarity S(A,B) between A
and B due to the following facts:

• S(A;B) is symmetric but A (A,B) is not symmetric.
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• S(A;B)= 1 even if A and B both are Intuitionistic fuzzy
sets but Accuracy A (A,B) 6= 1 if A and B both are In-
tuitionistic fuzzy sets.

Therefore, this type of accuracy measure seems to be im-
portant for pattern recognition problems.
Inspired by these characteristics present in intuitionistic
fuzzy sets, we introduce a notion of accuracy in an intu-
itionistic fuzzy set B relative to a reference intuitionistic
fuzzy set A. We also compute the degree of accuracy, the
axiomatic definition of such an intuitive measure of accu-
racy is as follows:
Definition 8 Let A, B, C ∈ IFS(X). Let A be a mapping
A : IFS(X)×IFS(X)→ [0,1]. A (A,B) is said to accuracy
in B relative to A if it satisfies the following properties:

(A1) 0 6 A (A;B)6 1;

(A2) A (A;B) = 0 iff πA(x) = 1;

(A3) A (A;B) = 1 if both A and B are crisp sets and
A = B, (ξA(x) = ξB(x), ηA(x) = ηB(x));

(A4) A (A;B) = K(A) if A = B;

We propose a measure of accuracy in B relative to A
as follows.
Let A and B be two fuzzy sets. The accuracy of the intu-
itionistic fuzzy set B relative to intuitionistic fuzzy set A
is given by

A (A;B) =
1
2

K(A)+
1
2

C(A,B),

where K(A) = 1
n ∑

n
i=1[ξ

2
A(xi) + η2

A(xi)] and C(A,B) =
1
n ∑

n
i=1[ξA(xi)ξB(xi)+ηA(xi)ηB(xi)].

Remark 1. A and B may not be similar at all but B may
be accurate to some extent relative to A.
For example, if A = (0,1), B = (1,0) then S(A,B) = 0;
A (A;B) = 0.5.
Where we consider the similarity measure S(A,B) =

∑
n
i=1

ξA(xi)ξB(xi)+ηA(xi)ηB(xi)√
ξ 2

A(xi)+η2
A(xi)
√

ξ 2
A(xi)+η2

A(xi)

Remark 2. There can be IFSs A and B with higher de-
gree of similarity but very low degree of accuracy.
For example, if A = (0.4,0.2), B = (0.5,0.2) then
S(A,B) = 0.9965; A (A;B) = 0.22.
Where S(A,B) is same as used in remark 1.

Theorem 6 A is a valid measure of accuracy.

Proof We verify the axioms A1−A4.

(A1) This is obvious from the definition.

(A2) Let πA(xi) = 1. This implies ξA(xi) = ηA(xi) =

0 ∀xi ∈ X , thus

A (A;B) =
1

2n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n

n

∑
i=1

[ξA(xi)ξB(xi)+ηA(xi)ηB(xi)].

= 0.

On the other hand, let

A (A;B) = 0

⇒ 1
2n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n

n

∑
i=1

[ξA(xi)ξB(xi)+

ηA(xi)ηB(xi)] = 0.
This is possible iff each term in sum on LHS is zero
i.e. ξ 2

A(xi) = 0,η2
A(xi) = 0 and ξA(xi)ξB(xi) = 0,

ηA(xi)ηB(xi) = 0 which gives, ξA(xi) = ηA(xi) = 0
and πA(xi) = 1.

(A3) Let A and B are crisp sets. Now we con-
sider ξA(xi) = ξB(xi) = 1,ηA(xi) = ηB(xi) = 0 and
ξA(xi) = ξB(xi) = 0,ηA(xi) = ηB(xi) = 1. Clearly
in both cases A (A;B) = 1. Hence, A (A,B) = 0 iff
πA(x) = 1.

(A4) We know that
A (A;B)

=
1
2n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n

n

∑
i=1

[ξA(xi)ξB(xi)+ηA(xi)ηB(xi)].

Now, when A=B

A (A;B) = K(A).

Thus A (A;B) is a valid measure of accuracy.

Theorem 7 Let A, B, C be three intuitionistic fuzzy sets
then A (A;B∪C)+A (A;B∩C) = A (A;B)+A (A;C).
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Proof Let
Z1 = {x|x ∈ X ,ξB(xi)> ξC(xi) & ηB(xi)< ηC(xi)},

Z2 = {x|x ∈ X ,ξB(xi)< ξC(xi) & ηB(xi)> ηC(xi)}.

where ξA(xi),ξB(xi) and ξC(xi) are the membership
functions and ηA(xi),ηB(xi) and ηC(xi) are the non-
membership functions of A, B and C respectively. Now

A (A;B∪C)

= 1
2n ∑

n
i=1[ξ

2
A(xi)+η2

A(xi)]+
1
2n ∑

n
i=1[ξA(xi)

ξB∪C(xi)+ηA(xi)ηB∪C(xi)]

= 1
2n ∑

n
i=1[ξ

2
A(xi)+η2

A(xi)]+
1

2n ∑
xi∈Z1

[ξA(xi)

ξB(xi)+ηA(xi)ηB(xi)]+
1

2n ∑
xi∈Z2

[ξA(xi)ξC(xi)+ηA(xi)ηC(xi)].

and

A (A;B∩C)

= 1
2n ∑

n
i=1[ξ

2
A(xi)+η2

A(xi)]+
1
2n ∑

n
i=1[ξA(xi)

ξB∩C(xi)+ηA(xi)ηB∩C(xi)]

= 1
2n ∑

n
i=1[ξ

2
A(xi)+η2

A(xi)]+
1

2n ∑
xi∈Z1

[ξA(xi)

ξC(xi)+ηA(xi)ηC(xi)]+
1

2n ∑
xi∈Z2

[ξA(xi)ξB(xi)+ηA(xi)ηB(xi)].

Therefore, we have

A (A;B∪C)+A (A;B∩C) = A (A;B)+A (A;C).

Theorem 8 Let A, B, C be three intuitionistic fuzzy sets
then

A (A∪B;C)+A (A∩B;C) = A (A;C)+A (B;C).

Proof Let
Z1 = {x|x ∈ X ,ξA(xi)> ξB(xi) & ηA(xi)< ηB(xi)},
Z2 = {x|x ∈ X ,ξA(xi)< ξB(xi) & ηA(xi)> ηB(xi)}.
where ξA(xi),ξB(xi) and ξC(xi) are the membership
functions and ηA(xi),ηB(xi) and ηC(xi) are the non-
membership functions of A,B and C respectively. We
have

A (A∪B;C)

=
1
2n

n

∑
i=1

[ξ 2
A∪B(xi)+η

2
A∪B(xi)]+

1
2n

n

∑
i=1

[ξA∪B(xi)

ξC(xi)+ηA∪B(xi)ηC(xi)]

=
1
2n ∑

xi∈Z1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n ∑

xi∈Z1

[ξA(xi)ξC(xi)+

ηA(xi)ηC(xi)]+
1

2n ∑
xi∈Z2

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n ∑

xi∈Z2

[ξB(xi)ξC(xi)+ηB(xi)ηC(xi)].

and
A (A∩B;C)

=
1

2n

n

∑
i=1

[ξ 2
A∩B(xi)+η

2
A∩B(xi)]+

1
2n

n

∑
i=1

[ξA∩B(xi)ξC(xi)+ηA∩B(xi)ηC(xi)]

=
1
2n ∑

xi∈Z1

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n ∑

xi∈Z1

[ξB(xi)ξC(xi)+

ηB(xi)ηC(xi)]+
1

2n ∑
xi∈Z2

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n ∑

xi∈Z2

[ξA(xi)ξC(xi)+ηA(xi)ηC(xi)].

Therefore,
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A (A∪B;C)+A (A∩B;C)

=
1
2n ∑

xi∈Z1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n ∑

xi∈Z1

[ξA(xi)ξC(xi)+

ηA(xi)ηC(xi)]+
1

2n ∑
xi∈Z2

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n ∑

xi∈Z2

[ξB(xi)ξC(xi)+ηB(xi)ηC(xi)]+

1
2n ∑

xi∈Z1

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n ∑

xi∈Z1

[ξB(xi)ξC(xi)+

ηB(xi)ηC(xi)]+
1

2n ∑
xi∈Z2

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n ∑

xi∈Z2

[ξA(xi)ξC(xi)+ηA(xi)ηC(xi)]

=
1
2n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n

n

∑
i=1

[ξA(xi)ξC(xi)+

ηA(xi)ηC(xi]+
1
2n

n

∑
i=1

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n

n

∑
i=1

[ξB(xi)ξC(xi)+ηB(xi)ηC(xi]

= A (A;C)+A (B;C).

Theorem 9 Let A, B, C be three intuitionistic fuzzy sets
then
A (A∪B;A∩B)+A (A∩B;A∪B)=A (A;B)+A (B;A).

Proof Let
Z1 = {x|x ∈ X ,ξA(xi)> ξB(xi) & ηA(xi)< ηB(xi)},
Z2 = {x|x ∈ X ,ξA(xi)< ξB(xi) & ηA(xi)> ηB(xi)}.

where ξA(xi),ξB(xi) and ξC(xi) are the membership
functions and ηA(xi),ηB(xi) and ηC(xi) are the non-
membership functions of A,B and C respectively. We
have
A (A∪B;A∩B)

=
1
2n

n

∑
i=1

[ξ 2
A∪B(xi)+η

2
A∪B(xi)]+

1
2n

n

∑
i=1

[ξA∪B(xi)

ξA∩B(xi)+ηA∪B(xi)ηA∩B(xi)]

=
1
2n ∑

xi∈Z1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n ∑

xi∈Z1

[ξA(xi)ξB(xi)+

ηA(xi)ηB(xi)]+
1
2n ∑

xi∈Z2

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n ∑

xi∈Z2

[ξB(xi)ξA(xi)+ηB(xi)ηA(xi)].

and A (A∩B;A∪B)

=
1
2n

n

∑
i=1

[ξ 2
A∩B(xi)+η

2
A∩B(xi)]+

1
2n

n

∑
i=1

[ξA∩B(xi)

ξA∪B(xi)+ηA∩B(xi)ηA∪B(xi)]

=
1
2n ∑

xi∈Z1

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n ∑

xi∈Z1

[ξB(xi)ξA(xi)+

ηB(xi)ηA(xi)]+
1

2n ∑
xi∈Z2

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n ∑

xi∈Z2

[ξA(xi)ξB(xi)+ηA(xi)ηB(xi)].

Therefore, A (A∪B;A∩B)+A (A∩B;A∪B)

=
1
2n

n

∑
i=1

[ξ 2
A(xi)+η

2
A(xi)]+

1
2n

n

∑
i=1

[ξA(xi)ξB(xi)+

ηA(xi)ηB(xi]+
n

∑
i=1

[ξ 2
B(xi)+η

2
B(xi)]+

1
2n

n

∑
i=1

[ξB(xi)

ξA(xi)+ηB(xi)ηA(xi)]

= A (A;B)+A (B;A).

Theorem 10 Let A,B be two intuitionistic fuzzy sets.
Then

(a) A (A;B) = A (A;B),

(b) A (A;A) = A (A;A),

(c) A (A;B) = A (A;B),

(d) A (A;B)+A (A;B) = A (A;B)+A (A;B).

Proof The proof of this theorem is an easy calculation.
9. Application of accuracy measure in pattern

recognition

Problem formulation: Let C1,C2, ...,Cn be some known
patterns characterized by IFS in the universal set Y =

{z1,z2, ...,zk} as follows:

Ci = {〈z j,ξCi(z j),ηCi(z j)〉|z j ∈ Y, j = 1,2, ...,k}.

Let

B = {〈z j,ξB(z j),ηB(z j)〉|z j ∈ Y, j = 1,2, ...,k}.

be an unknown pattern. The problem is to classify pattern
B into one of the known patterns Ci.
The solution of the problem can be obtained as follows:

1. Distance or Dissimilarity measure approach
Let d(Ci;B)= Distance or Dissimilarity of pattern
B from Ci. Then B is assigned to Ci∗

i∗ = arg min
i=1,2,...,n

{d(Ci;B)}.
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2. Similarity measure approach
Let S(Ci;B)= Similarity of pattern B from Ci∗ .
Then B is assigned to Ci∗

i∗ = arg max
i=1,2,...,n

{S(Ci;B)}.

3. Accuracy measure approach
Let A (Ci;B)= Accuracy of pattern B from Ci∗ .
Then B is assigned to Ci∗

i∗ = arg max
i=1,2,...,n

{A (Ci;B)}.

Xiao et al. 41 conducted a comprehensive investigation
of pattern recognition problem by distance/dissimilarity
measures. Boran et al. 7 gave comparative study of vari-
ous existing similarity measures in pattern recognition
problems. In the comparative studies regarding dis-
tance/dissimilarity measures (Xiao et al. 41 and the refer-
ences there in) and similarity measures (Boranet al. 7 and
the references there in), we observe that there is neither
a distance/dissimilarity measure nor a similarity mea-
sure which suits to every problem of pattern recognition.
This happens due to some counter intuitive situations.
Thus, a new distance/dissimilarity, similarity measure or
some alternative model is always desirable for pattern
recognition problems. Our proposed accuracy measure
is also an alternative and may be more effective than ex-
isting distance/dissimilarity and similarity measures in
some pattern recognition problems. For the sake of com-
parative study and demonstration of effectiveness of the
proposed accuracy measure, we consider the examples
from Boran and Akay 7 in pattern recognition problem
for applying accuracy measure approach.

Example 67 Let C1,C2 and C3 be the IFSs which
represents three known patterns in the universal set
Y = {z1,z2,z3,z4} respectively which are given below

C1 = {〈z1,0.5,0.3|z1 ∈ Y 〉,〈z2,0.7,0.0|z2 ∈ Y 〉,
〈z3,0.4,0.5|z3 ∈ Y 〉,〈z4,0.7,0.3|z4 ∈ Y 〉},

C2 = {〈z1,0.5,0.2|z1 ∈ Y 〉,〈z2,0.6,0.1|z2 ∈ Y 〉,
〈z3,0.2,0.7|z3 ∈ Y 〉,〈z4,0.7,0.3|z4 ∈ Y 〉},

C3 = {〈z1,0.5,0.4|z1 ∈ Y 〉,〈z2,0.7,0.1|z2 ∈ Y 〉,
〈z3,0.4,0.6|z3 ∈ Y 〉,〈z4,0.7,0.2|z4 ∈ Y 〉},

Now our aim is that the unknown pattern which is rep-
resented by the IFS B can be classified into one of the
patterns C1,C2,or C3. The unknown pattern B is given
below

B = {〈z1,0.4,0.3|z1 ∈ Y 〉,〈z2,0.7,0.1|z2 ∈ Y 〉,
〈z3,0.3,0.6|z3 ∈ Y 〉,〈z4,0.7,0.3|z4 ∈ Y 〉},

For some existing distance measures, the degrees of dis-
similarity/distances d(C1,B),d(C2,B) and d(C3,B) are
calculated 41. The results obtained are shown in Table
7.

Table 7. The distance between known and unknown patterns in Exam-
ple 6 (Patterns not discriminated are in bold italic)(p= 1 in dp

2 and t =
2, p = 1 in dd

f )

Distances d(C1,B) d(C2,B) d(C3,B)
dL

41 0.1083 0.1208 0.0917
dnH34 0.0750 0.0750 0.1000
dE

35 0.0866 0.0866 0.1118
lh32 0.0750 0.0750 0.0750
leh

49 0.0750 0.0750 0.1000
d1

35 0.0625 0.0687 0.0625
dP

2
35 0.0500 0.0625 0.0500

d1
Z

24 0.0500 0.0500 0.0500
d2

Z
24 NaN NaN NaN

dd
f

7 0.050 0.062 0.0333

From the results obtained in Table 7, we observe that
the distance dnH, dE , lh, leh, d1, dp

2 , d1
Z ,d

2
Z and dd

f are
not able to classify the pattern B into one of the problem
Ci (i = 1,2,3) as value of d(Ci;B) is same to the value of
i (shown in bold). Only, the distance dL can classify B in
the pattern C3.
Boran and Akay 7 also considers the same example and
uses similarity measure approach. The results are shown
in Table 8 for various existing similarity measures.
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Table 8. The similarity between known and unknown patterns
in Example 6 (Patterns not discriminated are in bold italic) (p =

1 in SHB,SP
e ,S

P
S ,S

P
h and p = 1, t = 2 in SP

E )

Similarity S(C1,B) S(C2,B) S(C3,B)
measures

SC
30 0.925 0.863 0.925

SH
33 0.975 0.963 0.975

SL
31 0.950 0.938 0.963

SO
15 0.929 0.921 0.929

SDC
13 0.950 0.938 0.975

SHB
46 0.950 0.938 0.950

SP
e

16 0.950 0.938 0.950
SP

S
16 0.950 0.938 0.963

SP
h

16 0.958 0.954 0.958
S1

HY
12 0.925 0.925 0.925

S2
HY

12 0.886 0.886 0.886
S3

HY
12 0.860 0.860 0.860

CIFS
36 0.991 0.987 0.996

SP
E

16 0.950 0.938 0.967

We observe that the similarity measures
SC, SH , SO, SHB, Sp

e , Sp
H , S1

HY , S2
HY and S3

HY are un-
able to classify pattern B. But the similarity measures
SL, SDC, Sp

S , CIFS and Sp
E can classify pattern B into pat-

tern C3.
Using both approaches distance/dissimilarity and simi-
larity measure the pattern B is classified into the pattern
C3.
Now, we apply accuracy measure approach. The value of
accuracy of pattern B from C1,C2, and C3 are as follows:
A (C1,B) = 0.445,A (C2,B) = 0.4412 and A (C3,B) =
0.4538.

Therefore, the accuracy measure approach also clas-
sify the pattern B into the pattern C3. Hence, our accuracy
measure approach is effective in this pattern recognition
problem.
Example 77 Let C1,C2 and C3 be the IFSs which rep-
resents three known patterns in the universal set Y =

{z1,z2,z3,z4} respectively which are given below

C1 = {〈z1,0.8,0.1|z1 ∈ Y 〉,〈z2,0.5,0.3|z2 ∈ Y 〉,
〈z3,0.5,0.5|z3 ∈ Y 〉,〈z4,0.6,0.1|z4 ∈ Y 〉,

C2 = 〈z1,0.5,0.4|z1 ∈ Y 〉,〈z2,0.4,0.2|z2 ∈ Y 〉,
〈z3,0,0|z3 ∈ Y 〉,〈z4,0.3,0.4|z4 ∈ Y 〉},

C3 = {〈z1,0.6,0.3|z1 ∈ Y 〉,〈z2,0.7,0.2|z2 ∈ Y 〉,
〈z3,0.6,0.1|z3 ∈ Y 〉,〈z4,0.2,0.5|z4 ∈ Y 〉},

The unknown pattern B is given below:

B = {〈z1,0.7,0.2|z1 ∈ Y 〉,〈z2,0.5,0.2|z2 ∈ Y 〉,
〈z3,1,0|z3 ∈ Y 〉,〈z4,0.4,0.3|z4 ∈ Y 〉}.

For some existing distance measures, the degrees of dis-
similarity/distances d(C1,B),d(C2,B) and d(C3,B) are
calculated by Xiao et al. 41. The results obtained are
shown in Table 9.

Table 9. The distance between known and unknown patterns
in Example 7 (Patterns not discriminated are in bold italic)(p =

1 in dp
2 ) and t = 2, p = 1 in dd

f

Distances d(C1,B) d(C2,B) d(C3,B)
dL

41 0.3625 0.5792 0.3042
dnH34 0.2250 0.3500 0.2250
dE

35 0.2784 0.5148 0.2345
lh32 0.2250 0.3500 0.2250
leh

49 0.2250 0.3500 0.2250
d1

35 0.2188 0.2813 0.1937
dP

2
35 0.2125 0.2125 0.1625

d1
Z

24 0.2350 0.3250 0.1625
d2

Z
24 NaN NaN NaN

dd
f

7 0.2125 0.2125 0.1625

From the results obtained in Table 9, we observe
that the distance dnH, lh, leh, dp

2 , d2
Z and dd

f are not
able to classify the pattern B into one of the problem Ci

(i = 1,2,3) as value of d(Ci;B) is same to the value of i
(shown in bold). The distances dL, dE , d1 and d1

Z are able
to classify pattern B in the pattern C3.
We also considers the same example and use similarity
measure approach. The degree of similarity for various
measures is shown in Table 10.

Table 10. The similarity between known and unknown patterns
in Example 7 (Patterns not discriminated are in bold italic)(p =

1 in SHB,SP
e , and p = 1, t = 2 in SP

E )

Similarity S(C1,B) S(C2,B) S(C3,B)
measures

SC
30 0.7875 0.7875 0.825

SH
33 0.8625 0.7875 0.825

SL
31 0.7875 0.7875 0.825

SO
15 0.8461 0.8095 0.8661

SDC
13 0.515 0.6125 0.5331

SHB
46 0.7875 0.7875 0.825

SP
e

16 0.9813 0.9969 0.9919
S1

HY
12 0.975 0.95 0.975

S2
HY

12 0.9609 0.9228 0.9609
S3

HY
12 0.9512 0.9048 0.9512

CIFS
36 0.8926 NAN 0.9451

We observe that the similarity measures
SC, SL, SHB, S1

HY , S2
HY , S3

HY and CIFS are unable to clas-
sify pattern B. But the similarity measures SH , SO, SDC

and Sp
e are able to classify pattern B into pattern C3.

1354

 
___________________________________________________________________________________________________________

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1338-1356



/

Using both approaches distance/dissimilarity and simi-
larity measure the pattern B is classified into the pattern
C3.
Now, we apply accuracy measure approach. The
value of accuracy of pattern B from C1, C2, and
C3 are as follows: A (C1,B) = 0.46625,A (C2,B) =

0.3725 and A (C3,B) = 0.47125.
Therefore, the accuracy approach also classify the pat-
tern B into the pattern C3. Hence, the accuracy measure
approach is effective in this pattern recognition problem.

10. Conclusion and future studies

In this study, we have introduced a measure of knowledge
contained in an IFS and investigated the applicability
and effectiveness of this knowledge measure in MADM
problems. It has been observed that some existing
knowledge measures are useful for a large degree of
hesitancy in IFS while our proposed knowledge measure
is useful in the problems in which the IFS have the
small degree of hesitancy. We have also introduced an
unorthodox measure of accuracy of an IFS relative to a
given IFS. Further, we have shown the effectiveness and
application of the proposed accuracy measure in pattern
recognition problems through illustrative examples.
The proposed accuracy measure has been found to be
an effective alternative to similarity and dissimilarity
measures in the study of pattern recognition problems.
The usefulness and some potential applications of intu-
itionistic fuzzy information measures presented in this
work may be summarized as follows:
1). The optimization problem dealt with fuzzy entropy
or intuitionistic fuzzy entropy alone may provide better
insight to the experts if knowledge measure is also
considered along with entropy measure.
2). The accuracy measure between IFSs (asymmetric
similarity measure) may provide robust solutions to the
problems where asymmetric similarity measures are
desired.
3). In some counter-intuitive situations the proposed ac-
curacy measure recognise the pattern but some similarity
measures are unable to do so.
4). The proposed accuracy measure can be applied in the
problems of binary image segmentation.
Our future studies includes:
1). Development of an aggregated or hybrid intuition-
istic fuzzy information comprising intuitionistic fuzzy
entropy and intuitionistic fuzzy knowledge measure.
2). To apply intuitionistic fuzzy accuracy measure in
image segmentation problem.
3). Extension of the proposed knowledge measure and
accuracy measure to interval-valued intuitionistic fuzzy
sets/hesitant fuzzy sets.
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