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Abstract – In a number of previously published papers by 

D. Sirota and V. Ivanov, it is theoretically and experimentally 

shown that the electrical measurements on the earth's surface 

can determine the approximate size and depth of the hearth of 

a man-made earthquake and a rock bursts in coal seams at 

depths of the hearth to several hundred meters. To predict the 

energy of the upcoming seismic event and determine the 

location of the event, it is necessary to determine the size, shape 

and orientation of the hearth. 
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I. INTRODUCTION 

Theoretical, laboratory and mine experimental studies 
conducted at Kuzbass state technical University have 
produced the following main results [1 – 4]. 

The process of preparing a rock bursts or man-made 
earthquake is kinetic, i.e., a time-course process consisting of 
the stages of scattered accumulation of microcracks and the 
stage of localization of destruction, when a macro-rupture is 
formed, and at the first stage the process is a Markov random 
process, and at the last it is subject to Hurst statistics, i.e. it is 
not Markov. At the first stage, the process is adequately 
described on the basis of the kinetic theory of strength of S. 
N. Zhurkov [5]. In the process of birth or slip each crack 
separation or shear in rocks of different mineral composition 
carries at its apex charge of one sign and dipole moment, 
which quickly relax after stopping the crack (for 10-4 – 10-11 
sec.). For different rocks charges range from 10-11 to 10-13 
KL per unit length of crack front, with the main mechanisms 
of charge and dipole moment are the piezoelectric effect of 
rocks, diffusion of charged point defects of the structure 
(vacancies and interstitial ions) in the field of mechanical 
stresses of a moving crack, adhesion on the contact of 
mineral grains composing the rock. Each arising and 
spreading crack corresponds to the pulse of electromagnetic 
emission, and the ensemble of arising cracks creates a 
background of electromagnetic radiation, well recorded in 
mine conditions long before the mining impact. Each arising 
and spreading crack corresponds to the pulse of 
electromagnetic emission. The ensemble of arising cracks 
creates a background of electromagnetic radiation, well 
recorded in mine conditions long before localization of the 
rock bursts zone. It can be by electrical measurements on the 
earth surface or in the atmosphere during avalanche-unstable 
cracking, when in each cubic centimeter of the hearth 
according to the concentration criterion of destruction SN. 

Zhurkov accumulates up to 1013 microcracks with sizes from 
10-4 to 10-3 m. 

In this article let us investigate the inverse problem of 
determination the 3D shape of the rock burst or man-made 
earthquakes. The solution of this problem will be based on 
the using regularization technique by A. N. Tikhonov [6,76] 
and transform to solving the Fredholm-Urisohn integral 
equation of the first kind [8 – 15]. Let us apply the random 
search method "simulated annealing" (SA) [16, 17] in 
conjunction with the conjugate gradient method (CG) [18 – 
20] for solving the multiextremal auxiliary optimization 

problem. 

II. FORMULATION AND  

SOLUTION OF THE DIRECT PROBLEM 

Let us assume that the electric field is generated by a 3D-
source of arbitrary shape Vp and the containing space is the 
homogeneous isotropic two-layers with plane-parallel 

borders and the specific resistance 21,  and the field 

source is in the first layer. Let us first calculate the field of a 
point source (Fig. 1) in the coordinate system Oxyz, which is 
located in point source. 

As well as known, the potential on the second layer and 
on the earth’s surface from the point source can be calculated 
by the formula [4]: 


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Fig. 1. To calculation the field in the atmosphere from the failure zone 
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where C – is the coefficient characterizing the source; xM,  yM,  
zM   –  are the point of measurement coordinates on the 
earth’s surface.  

In [1 – 3] we calculated the potential for a flat shape and 
a cylinder. In this paper we will consider the general case of 
a 3D body and ellipsoid for testing program for solving 
inverse problem. 

If we want to calculate the potential from the 3D source 
we must to integrate the (1) as  

 
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where VP  is the 3D body (ellipsoid Fig. 1); xP,  yP,  zP  are 
the coordinates of the point P inside the focal zone, which in 
(2) is the external integration; xM,  yM,  zM  are the coordinates 
of measurement point on the earth’s surface, 

  2
1

222 )()()( MPMPMP zzyyxxMP   is the 

distance between M and P. 

Let us transform the (2) to a dimensionless form by 

notations wzw M / , where the dimensions of a quantity of 

w is the meter as in [2, 3]. After that the elementary volume 
dVP is converted to the following dimensionless quantity 

pMp VdzdV 3  and the (2) will be transformed to 
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where 
222 )()( MPMP yyxxr  . 

Below for simplicity let us not to write line over the 
dimensionless quantities. 

To calculate the three dimensional integral, we define the 
boundary of the region as a function R(φ,ψ) in the spherical 

coordinate system as follows:  cossinpx  

 sinsinpy ,  cospz ,  20 , 0  

and  ddddVp sin2
. 

Thus we can rewrite the 3D integral (3) as 
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The inner integral I over variable ρ we can calculate as 
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where abRRRR  ),(),(2 . 

To calculate the intensity of a field we can use the 
difference schemes of 2nd order of accuracy: 
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Bellow we will test program for the modeling focal area 
as ellipsoid with the axes CBA  . The dimensionless 

equation of it in spherical coordinate system will look like  
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where  is the angle from the interval 
00 6523  , 

BCT )sincoscoscos(sin1 
, 

ACT  sinsin2 , 

ABT )coscossincos(sin3 
. 

Let us calculate dimensionless potential and intensity for 
the ellipsoid as the field source with parameters 50A , 

25B , 10C , 150H  m, 
000 60,45,30  and 

measurement point with coordinates 0My , 

]400;400[Mx  m. The graphical results of calculations 

are in Fig 2, 3. 

Fig. 2. The values of the dimensionalless potential of the field. 
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Fig. 3.  The values of the dimensionalless field intensity 

Thus, the problem of diagnostic the form of the 3D 
source based on electrical measurements on earth’s surface 
has been reduce to the Fredholm-Urysohn integral equation 
of the first kind with respect to the unknown function 

),( R : 
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experimental values of potential or intensity of field.  

III. SOLUTION OF THE INVERSE PROBLEM 

Let us introduce the solution of the inverse diagnostic 

problem for an unknown function ),( R  based on finding 

the minimum of the A.N. Tikhonov’s regularized functional 
[6, 7, 8 –15]: 
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is a stabilizing functional of the second order, α – is the 
regularization parameter (5, 6); A – is the direct modeling 
operator (3). 

Let us solve the problem (8) with two type of search: 
exploratory and advance. As the exploratory we will use the 
method of random search “simulated annealing”, as the 
advance we will use the conjugated gradient (CG) method. 

Let us give an algorithm for the first method [16, 17].  

Step 1. Create start value of ),(0  RR , calculate the 

value of the goal function )( 00 R , create start 

temperature T0 and lower limit of it 0 . Repeat steps 2 – 

5 while 0T . 

Step 2. Generate the new value of RRR  01 , 

calculate the value of the goal function )( 11 R , 

calculate delta of  the goal function 01  . 

Step 3. Test the condition 0 . If it is true then take 

10 RR  , downgrade the temperature and go to Step 2, else 

Step 4. 

Step 4. Generate the random number ]1;0[k , calculate 

the probability P of accepting a new value,  

   )/exp( 010 TRRP  

Step 5. Test the condition kP  . If it is true then take 

10 RR  , downgrade the temperature and go to Step 2, else 

simple go to Step 2. 

Afterwards let us start second methods, whose general 
iterative scheme has the form  
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(8), which is calculated as [7,8]  
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IV. THE NUMERICAL REALIZATION OF  

THE ALGORITHM 

Consider the features of the common formulas (5,8). For 
the numerical realization of the integrals we will use the 7th 
order  Newton-Cotes quadrature. Thus let us create two grids 
with 49 elements for   and   for it: 

  2,48,...2,,0 hhh ,   ,48,...2,,0 hhh . Thus 

we must to determinate 2401 unknown variables of ),( R  

For calculate first and second partials derivative let us 
use 5-th points difference scheme. 

Let us consider the features of the first algorithm. We 
need to identify two patterns: the generation of a new point 
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R  (here we have to consider the limitations )1;0(R ) and 

annealing temperature lowering formula. Let the value of 

R  is determined as [10] randRR tt  1,01  and 

recalculate randRt 1 , if ]1;0[1 tR , where the rand is 

uniformly distributed numbers in the interval ]1;0[ . 

Let the temperature will fall under by the Cauchy scheme 
as )1ln(/ tTT  , where t is the number of SA algorithm 

iteration. 

Consider the features of the second algorithm. «The 
conjugate gradient method» is a common name for a variety 
of methods each realization of which is determined by the 

choice of the value 
)(qj . In [17 – 20] there are over 15 

options of it. Experimentally, after several tests, the 
following formula was chosen as 
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where   is the dot product, q – is the number of CG 
algorithm iteration. 

Let us apply this algorithm for test problem: failure zone 
is the ellipsoid with 100A , 75B , 25C  m; 150H  

m; inclination angle 
030  For simulation errors in real 

measurements let us add a random correction as 

)5,0(5,0  randUU ex
. For the graphic image of the 

restored area let us use two sections of ),( R : ),26( hR  

and )26,(  hR . 

The result of calculation after 50 SA iterations and 10 CG 
iteration with double repeat of it is on Fig 4. 

Fig. 4.  The precise (1) and the results of restoration failure zone (2). 

V. CONCLUSION 

As in [1 – 3] let us give practical recommendations for  
using of the developed methodology. The user must  do a 
coordinate grid on the surface with a step of about 25-50 

meters. In each node of this grid, the user measure the field 
potential. The contour map is constructed, along which the 
elongation line of the proposed source is determined. More 
accurate measurements in the amount of at least 20 are taken 
along this line. These data will be used as initial data. If 
detailed measurements are impossible, then an approximate 
interpolation polynomial is constructed, along which the 
required values of the potential are determined. Further, with 
the help of the developed program, the form of the 3D failure 
zone is defined.  
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