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Abstract—In the three-dimensional ordinary differential 
equations, a systematic methodology for generating and 
designing N-scroll chaotic attractors have been proposed by Liu 
in 2016, which was named the translation chaotic system and the 
translation transformation principle, respectively. In this paper, 
generation N-scroll existence four different functions are been 
proposed. They are absolute function, sign function, the piecewise 
and hyperbolic function. Then, the dynamics properties in the 
chaotic system via different methods are investigated in detail. 
Furthermore, MATLAB simulation results show that these 
methods emerge similar but topologically non-equivalent chaotic 
attractors. 

Keywords—translation chaotic system; dynamics properties; 
lyapunov exponent; hopf bifurcation; poincaré map 

I. INTRODUCTION 

Chaos theory, with relativity and quantum mechanics, is 
called one of the greatest discoveries of the twentieth Century. 
Earlier, scientists had realized that some deterministic 
dynamical systems involving only a few variables could 
exhibit complexity reminiscent of many-particle systems if the 
dynamics is chaotic, as can be quantified by the existence of a 
positive Lyapunov exponent, Hopf bifurcation and Poincaré 
map[1-5]. More, topological mixing[6] and periodicity[7] are 
also important factors from popular accounts of chaos, which 
equate chaos with sensitivity to initial conditions. Over the 
past six decades, chaos theories and chaos applications 
continue to be a very active area of research, involving many 
different disciplines[6, 8-17] (mathematics, topology, physics, 
etc.). In 1963, Lorenz found the Lorenz system was marked as 
the first remarkable chaotic model, which has just been 
mathematically confirmed to exist[8]. Since then, many 
scientists have begun to investigate the N-scroll chaotic 
attractors. Many research results have been obtained, such as 
generalized Lorenz canonical form[18,19], multi-wing 
butterfly attractors[20], Rössler systems[21] and so on. It is 
worth noting that these new chaotic systems are three 
dimensional quadratic autonomous ODEs. Subsequently, Chua 
circuit[22.23], created by Chua L.O. in 1983, and the other 
new N-scroll chaotic attractors[24-28] are obtained. They are 
three dimensional autonomous ODEs.  

Inspired by previous works, the above research results are 
summarized. The translation-type chaotic systems were 
proposed[29,30] by Liu in 2016. This new type of chaotic system 

is composed of three subsystems, and one is named the 
translation chaotic system (a12a21 = 0). Also, based on the 
translation transformation principle, the N-scroll attractors are 
obtained by the successful design criterion. In this paper, we 
propose the other four different design functions, which can 
generation N-scroll existence in the translation chaotic system. 
They are absolute function, sign function, the piecewise and 
hyperbolic function. Then, the dynamics properties are 
investigated in detail. Furthermore, MATLAB simulation 
results show that these chaotic attractors are similar but 
topologically non-equivalent. Undoubtedly these results will 
improve this chaotic system application value in the future. 

We now outline the remainder of this paper. The 
translation chaotic system and translation transformation 
principle are given in Section II. In Section III, four different 
design functions are proposed, which can generation N-scroll 
existence. Then, simulation and the dynamics behaviors are 
also given to illustrate. Finally, concluding remarks are given 
in Section IV. 

II. THEORETICAL DESIGN OF N-SCROLL CHAOTIC 

ATTRACTORS 

The translation-type chaotic system is defined by the 
following ODEs: 
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where x1, x2, x3 are state variables, aij (1≤i≤3, 1≤j≤3) are real 
parameters and F(X) is the design criterion for constructing 
2N+1-and 2(N+1)-scrolls based on the translation 
transformation principle[30]. By setting the some parameters 
and translation criterion, we can get three different subsystems.  

A. Translation Chaotic System 

The system (1), let x1=x, x2=y, x3=z, a21=a22=0, a23=b. 
Here, we would obtain the following simplest possible 
candidate system, which satisfies the condition a12a21 = 0: 
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where x, y, z are state variables.  

The system (2) gives us some basic information. Firstly, 
the system is a nonlinear ODEs, but it is unstable, dissipative 
and easily falling into the chaotic regime, and the scroll 
trajectory is bounded. Secondly, the system has equilibrium 
points, one of them in the origin O(0,0,0). By the Routh–
Hurwitz criterion, and the dissipation, the following conditions 
are satisfied: a11<-a33. 

B. Translation Transformation Principle  

In order to obtain 2(N+1)- and 2N+1-scroll attractors, we 
describe the new translation transformation principle as shown 
in Figure 1. 

 
(a)                                                  (b) 

FIGURE I.  TRANSLATION TRANSFORMATION PRINCIPLE: (a)4-
SCROLL; (b) 3-SCROLL 

With enough time and the specific parameterization, the 
combination of all motion trajectories forms. It obtained 
2(N+1)- and 2N+1-scroll attractors (N= 1, 2, 3, 4, . . .). 

III. GENERATION AND DYNAMIC BEHAVIORS OF N-SCROLL 

VIA FOUR DIFFERENT FUNCTIONS 

A. Higher Number of Scrolls via Absolute Function 

To unified variables (x, y, z), the dimensionless state 
equation of system (2) model is described by, let a11= -a , a12= 
0, a13=r , a31=0, a32=-b, a33=c. 

     

  

     



















zyxfzczyxfyb
dt

dz

zyxfzb
dt

dy

zyxfzrzyxfxa
dt

dx

           (3) 

where x, y, z are state variables, and a, b, c, r are real 
parameter. And f(x+y+z) is the nonlinear absolute function, 

which is the translational transformation criterion for 
constructing scroll, as below: 

f(x+y+z)=A×(|x+y+z+2A|-|x+y+z-2A|)          (4) 

When a=4,r=2.4, b=4.4, c=0.2 the system(3) can display 
single and double-scroll attractors simultaneously, as shown in 
Figure 2. And real A (A ≥ 0) is related to the position of the 
equilibrium point, at (±2A, ±2A, ±2A).  

 
(a)                                           (b) 

FIGURE II.  SCROLL ATTRACTORS BY THE STATE QRUATION: 
(a)A=0; (b) A=0.5, r>0 

Note, the parameter r represents the horizontal direction of 
the attractors, if r=0, which means they perpendicular to the 
X-axis in horizontal direction, as shown in Figure 3(a); if r<0, 
which means the horizontal direction and X-axis at obtuse 
angle, as shown in Figure 3(b); and if r>0, which means the 
horizontal direction and X-axis at acute angle, as shown in 
Figure 2(b). 

 
(a)                                                (b) 

FIGURE III.  DOUBLE SCROLL:(a) r=0; (b) r<0 

1) Bifurcation: Case 1: b=4.4, c=0.2, r=2.4 and varying 
a, when a≥1.35, the bifurcation diagram of x is given in Figure 
4(a). Case 2: a=4, c=0.2, r=2.4 and varying b, when bϵ[3.3, 
6.2], the bifurcation diagram of x is given in Figure 4(b). Case 
3: a=4, b=4.4, r=2.4 and varying c, when cϵ(0.1, 0.4)the 
bifurcation diagram of x is given in Figure 4(c). We can see 
that the system shows abundant and sophisticated dynamical 
behaviors with parameters. 
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(a)                                                   (b) 

 
(c) 

FIGURE IV.  (a) BIFURCATION FOR a. (b). BIFURCATION FOR b. (c). 

BIFURCATION FOR c 

2) Lyapunov exponent and Hausdroff dimension: The 
initial values is (0.1,0.1,0.1). When a=4, b=0.2, c=4.4, r=2.4. 
The Lapunov exponent (LE) spectrum is shown in Figure 
5.According to system (2) the LEs are as follows: LE1=4.02, 
LE2=0, LE3=-3.61. Based on the Lyapunov exponents, we can 
calculate the Hausdroff dimension DL=2.102. 
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FIGURE V.  LYAPUNOV EXPONENT 

3) Poincaré maps: Poincaré section method is a direct 
and effective method which can observe and analyze complex 
dynamic behavior of system (2). It is depicted in Figure 6. It 
can be seen that it is consists of a series of isolated points, 
which means that the system is manifestly chaotic. 

 
(a)                                            (b) 

FIGURE VI.  POINCARE MAPPING: (a) z=0; (b) x+z=0 

B. Higher Number of Scroll via Sign Function 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, SC, DC, 

and RMS do not have to be defined. Do not use abbreviations 
in the title or heads unless they are unavoidable. 

To unified variables (x, y, z), the dimensionless state 
equation of system (2) model is described by, let a11= -a , a12= 
r, a13=0 , a31= -p, a32=-q, a33=-c 
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where x, y, z are state variables, and a, b, c, r are real 
parameter. And f(x) is the nonlinear sign function, which is the 
translational transformation criterion for constructing 2N+1-
and 2(N+1)-scroll, as below: 

(1) f1(x)= f(x) is the first translational criterion, which 
can generate N+1-double scroll attractors as below: 
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When A=0.5, a=0.4, p=q=b=r=1, c=0.6, N=0 (NϵR), the 
system can display double-scroll attractors, and N=7, the 
system can display 8-double scroll attractors, as shown in 
Figure 7. 

 
FIGURE VII.  8-DOUBLE SCROLL 

(2) f2(x)= f(x) is the second translational criterion, which 
can generate 2N+1-scroll attractors as below: 
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When A=1, a=0.3, p=q=1, b=0.4, r=2, c=0.6, N=1(NϵR), 
the system can display 3-scroll attractors, and N=7, the system 
can display 15- scroll attractors, as shown in Figure 8. 
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FIGURE VIII.  15- SCROLL 

1) Equilibrium: Real A (A ≥ 0) is related to the position 
of the equilibrium point, as follows: ① In the chaotic system 
of N+1-double scroll attractors, at (±2nA,0,0); ②  In the 
chaotic system of 2N+1- scroll attractors, at (±(2n-1)A,0,0). 

2) Bifurcation: Taking 2-double scroll attractors and 
p=q=1, as an example to investigate bifurcation. Case 1: r=2, 
b=0.4, c=0.6 and varying a, when aϵ[0, 0.23], the bifurcation 
diagram of x is given in Figure 9(a). Case 2: a=0.2, b=0.4, 
c=0.6 and varying r, when rϵ[0.88, 3), the bifurcation diagram 
of x is given in Figure 9(b). Case 3: a=0.2, r=2, c=0.6 and 
varying b, when bϵ(0, 5] the bifurcation diagram of x is given 
in Figure 9(c). Case 4: a=0.2, r=2, b=0.4 and varying c, when 
cϵ(0, 0.74] the bifurcation diagram of x is given in Figure 9(c). 
We can see that the system shows abundant and sophisticated 
dynamical behaviors with parameters. 

 
(a)                                                    (b) 

 
(c)                                            (d) 

FIGURE IX.  BIFURCATION (a) FOR a; (b) FOR r; (c) FOR b; (d) FOR c 

3) Lyapunov exponent and Hausdroff dimension: The 
initial values is (0.1,0.1,0.1). When A=1, p=q=1, a=0.1, r=8, 
b=0.4, c=0.5, 15-scroll The Lapunov exponent (LE) spectrum 
is shown in Figure 10. According to system (5) the LEs are as 
follows: LE1=4.008, LE2=0, LE3=-3.93. The Hausdroff 
dimension DL=2.02. 
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FIGURE X.  LYAPUNOV MAPPING 

4) Poincaré maps: The Poincaré mapping is depicted in 
Figure 11.  
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FIGURE XI.  PONCARE EXPONENT 

C. Higher Number of Scrolls via Piecewise Functions 

Now, f(x) is the nonlinear the piecewise function in the 
chaotic system (5), which is the translational transformation 
criterion for constructing 2N+1-and 2(N+1)-scroll, as below: 

(1) f1(x)= f(x) is the first translational criterion, which 
can generate N+1-double scroll attractors as below: 
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1 22
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A
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When A=1, a=0.4, p=q=1, r=2, b=1.2, c=0.6, 
m=0.2(variable parameters), N=0 (NϵR), the system can 
display double-scroll attractors, and N=3, the system can 
display 4-double scroll attractors, as shown in Figure 12. 

 
FIGURE XII.  7- DOUBLE SCROLL 

(2) f2(x)= f(x) is the second translational criterion, which 
can generate 2N+1-scroll attractors as below: 
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When A=1, a=0.1, r=2, p=q=1, b=1.2, c=0.6, m=0.2, 
N=1(NϵR), the system can display 3-scroll attractors, and N=3, 
the system can display 7- scroll attractors, as shown in Figure 
13. 

 
FIGURE XIII.  7- SCROLL 

1) Equilibrium: Real A (A ≥ 0) and m (variable 
parameters) are related to the position of the equilibrium point, 
as follows: (1) In the chaotic system of N+1-double scroll 
attractors, at (±2nA,0,0); (2) In the chaotic system of 2N+1- 
scroll attractors, at (±[2n-(|n|/n)]A,0,0).  

2) Lyapunov exponent and Hausdroff dimension: The 
initial values is (0.1,0.1,0.1). When A=1, p=q=1, a=0.1, r=2, 
b=1.2, c=0.6, m=0.2, According to system (5) the LEs are as 
follows: LE1=0.04, LE2=0, LE3=-1.33.The Hausdroff 
dimension DL=2.97. 

D. Higher Number of Scrolls via Hyperbolic Function 

Now, f(x) is the nonlinear the Hyperbolic function in the 
chaotic system (5), which is the translational transformation 
criterion for constructing 2N+1-and 2(N+1)-scroll, as below: 

(1) f1(x)= f(x) is the first translational criterion, which 
can generate N+1-double scroll attractors as below: 
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When A=1, a=0.3, r=2, p=q=1, b=1.5, c=0.6,m=6 
(variable parameters), N=0 (NϵR), the system can display 
double-scroll attractors, and N=4, the system can display 5-
double scroll attractors, as shown in Figure 14. 

 
FIGURE XIV.  8-DOUBLE SCROLL 

(2) f2(x)= f(x) is the second translational criterion, which 
can generate 2N+1-scroll attractors as below: 
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When A=1, a=0.3, p=q=1, r=1.1, b=1.2, c=0.6, m=6, 
N=0(NϵR), the system can display single scroll attractors, and 
N=4, the system can display 9- scroll attractors, as shown in 
Figure 15. 
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FIGURE XV.  9- SCROLL 

1) Equilibrium: Real A (A ≥ 0) and m (variable 
parameters) are related to the position of the equilibrium point, 
as follows: ①  In the chaotic system of N+1-double scroll 
attractors, at (±2nA,0,0); ② In the chaotic system of 2N+1- 
scroll attractors, at (±[2n-(|n|/n)]A,0,0).  

2) Lyapunov exponent and Hausdroff dimension: The 
initial values is (0.1,0.1,0.1). When A=1, a=0.1, p=q=1, r=7, 
b=1.2, c=0.5, m=5.5, According to system (5) the LEs are as 
follows: LE1=2.741, LE2=0, LE3=-2.365. The Hausdroff 
dimension DL=2.137. 

IV. CONCLUSION  

In this paper, generation N-scroll existence four different 
functions are been proposed of the translation chaotic system. 
They are absolute function, sign function, the piecewise and 
hyperbolic function. Then, the dynamics properties are 
investigated in detail. Furthermore, MATLAB simulation 
results show that these functions emerge similar but 
topologically non-equivalent chaotic attractors. Undoubtedly 
these results will improve this chaotic system application 
value in the future. 
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