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Abstract. In this paper, the implicit finite difference method is developed for the fractional wave 
equation with Dirichlet and fractional boundary conditions. The consistency and stability of the 
method are strictly proved by the Gerschgorin theorem and mathematical induction. Numerical 
examples show the accuracy and efficiency of the scheme and coincide with the theoretical analysis. 

Introduction 
Fractional differential equations are generalizations of integer-order differential equations, which 
have been used in many models, such as fractional diffusion equations describing anomalous 
diffusion [1,2] and continuous-time finance problems [3], fractional Fokker-Planck equations 
describing Lévy stable processes [4,5] and porous media [6], and fractional wave equations 
describing chiral media [7-9], waveguides [10], reflection and scattering problems [11]. As most of 
fractional differential equations do not have explicit analytical solutions, research on numerical 
methods of fractional differential equations become critical. 

In this paper, we consider the fractional wave equation with the the left-sided fractional spatial 
derivative as follows 
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where the parameter α describes the fractional order of spatial derivatives with 1 2α< < . 
Coefficient  function ( , )c x t  is positive, ( , )d x t  refers to a source term, 0γ =  corresponds to a 
fractional Neumann boundary condition, and 0γ >  corresponds to a fractional Robin boundary 
condition. 
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The space fractional derivatives are defined as the Riemann-Liouville fractional derivative [12-14] 
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where n  is an integer, and 1n nβ− < ≤ . When β  is an integer, (4) gives the standard integer 
derivative. 

Recently, Jia and Wang [15] developed a fast finite difference method for space-fractional 
diffusion equations with fractional derivative boundary conditions in one space dimension. Guo et al. 
[16] processed an implicit finite difference method for a one-dimensional fractional percolation 
equation with the Dirichlet and fractional boundary conditions. To our knowledge, implict finite 
difference method for fractional wave equation with the Dirichlet and fractional boundary conditions 
is still limited. This motivate us to examine a numerical approach for it. 

The rest of the paper is organized as follows. In Section 2, we construct an implicit finite difference 
scheme and study its consistency. The stabilty of the scheme is proved in Section 3. In Section 4, we 
carry out numerical examples to check the accuracy and efficiency of the proposed scheme. Finally, 
we draw our conclusions in Section 5. 

Implicit finite difference method and its consistency 
In this section, we construct an implicit finite difference scheme and study the consistency for (1-3). 

For the numerical approximation scheme, Let ( 0,1,2, , )mt m t m M= ∆ = L , ( 0,1,2, , )ix ih i N= = L  

to be the temporal partition and the spatial partition, respectively, where M  and N  are positive 

integers. Then time grid size is /t T M∆ =  and space grid size is /h L N= . Denote the exact and 

numerical solution at the mesh point ( ),i mx t  by m
iU  and m

iu , respectively. Define 
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According to [17], the left-sided fractional spatial derivative can be approximated by the shifted left 
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where 1 1,0 1i N m M≤ ≤ − ≤ ≤ − , and ( ) ( 1) j
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 are the fractional binomial coefficients. 

To approximate (1) we use the backward Euler difference scheme for the second order time derivative 
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where 1 1,1 1i N m M≤ ≤ − ≤ ≤ − . 
And the left-sided fractional spatial derivative of the order 1α −  in (2) can be discretized by the 

standard left Grünwald-Letnikov fractional derivative [17] as 
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where 0 1m M≤ ≤ − . 
The first order time derivative in (3) can be approximated by the forward Euler difference 

scheme 
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where 1 1i N≤ ≤ − . 
Therefore, an implicit finite difference scheme can be expressed as follows: 
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Denote the local truncation error by m
iR  for 1 i N≤ ≤ . It follows from (9)-(12) that 
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This implies the consistency of the implicit finite difference scheme difined by (9)-(12). 

Stability analysis 
In this section, we discuss the stability and convergence of the numerical method (9)-(12). 

Let 
2tr
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where 1 1m M≤ ≤ − . Then the implicit finite difference schemes (9)-(12) can be presented as the 

matrix form as follows: 
(1) 1 1 0,A U P P= +                                                                                                                            (17)     

Advances in Engineering Research, volume 170

3



 

(2) 1 1 12 ,1 1,m m m mA U Q Q D m M+ − += − + ≤ ≤ −                                                                                   (18)     

where 

( )
( )
( )
( )
( )

1 1

1 1 1 1
1 1 1

0 0 0 0 1 1
1 1 1

1 1 1,0

2 2 2 1
1 1 1

, , , ,

, , , ,0 ,

, , , , ,

, , , ,

( ) ,( ) , ,( ) , ,

Tm m m m
N

T

N

T

N

Tm m m m
N

Tm m m m m
N

U u u u

P tp tp tp

P p p p h v

Q u u u

D t d t d t d h v

α

α

−

−
−

−

−
−

=

= ∆ ∆ ∆

=

=

= ∆ ∆ ∆

L

L

L

L

L

 

and the coefficient matrix (1)A , (2)A  and their entries are 
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In the following, we present some lemmas  which are used later in this paper. First, we list some 
properties of the alternating fractional binomial coefficients [14]. 

 
Lemma 1. Let β , 1β , and 2β  be positive real numbers, and the integer 1n ≥ . We have 
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Before giving the Lemma 2, we consider a equivalent form of the the finite difference scheme (18). 

Let us express the coefficient matrix (2)A  defined by (20) in a block form as follows 
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Lemma 2. The spectral radius of the matrix ( ) 1
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Proof     Our first goal is to show that the eigenvalues of the matrix B  have negative real parts. As 
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Then by Gerschgorin theorem [18], we have that all of the Greschgorin disks of the matrix B  are 
within the left half of the complex plane. 

Next, from (27), we can clear know that the eigenvalues of the matrix 1, 1N NA − −  has a magnitude 

larger than 1. Therefore, the spectral radius of the matrix ( ) 1
1, 1N NA

−

− −  is less than 1. This completes 
the proof. 

To discuss the stability of the numerical method, we denote 
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iu%  is the approximate solution of the difference scheme with the initial condition 0
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For the stability of the numerical method, we have the following theorem. 
Proposition 1.  There exists a positive constant independent of t∆  and h  such that 
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Using mathematical induction, we complete the proof. 
The following theorem can be obtained by above proposition [19-20]. 
Theorem 1.   The implicit finite difference (17)-(18) is unconditional stable. 

Numerical example 
In this section, we consider the numerical solution of the fractional wave equation using the 

proposed scheme (9)-(12). 
Example.   We consider the following fractional wave equation 
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where ( , ) (3 )c x t xαα= Τ − , 2( , ) 3 exp( ).d x t x t= − −  

The exact solution of this problem is given by 
2( , ) 3 exp( ).u x t x t= −  

A comparison between the exact and the numerical solutions using the proposed method with 
1 / 40t h∆ = = at 1T =  is presented in Fig. 1. It can be seen that our numerical results are in excellent 

agreement with the exact solution both for the 145 fractional Neumann boundary condition ( 0γ = ) 
and Robin boundary condition ( 1γ = ). 

Table 1 shows the maximum errors at the time 1T = , where 410h −= , a value small enough such 
that the space discretization errors are negligible while comparing with the time errors. It illustrates 
that the numerical method is  temporally first-order accurate both for the fractional Neumann and 
Robin boundary condition. In Tables 2, with sufficiently small time step size 410t −∆ = , the 
convergence order in space of our schemes is also checked as first-order accurate. This implys the 
stability of the implicit finite difference scheme (9)-(12) proved in Theorem 1 and shows that the 
scheme are temporally and spatially first-order accurate. 
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(a)                                                                       (b) 

Fig.1 The comparisons of numerical solution and exact solution for 1.9, 1 / 40t hα = ∆ = =  at the 
time 1T =  (a) 0γ =  (b) 1γ = . 
 

Table 1: Numerical errors and convergence orders in time direction with 41.9, 10hα −= =  
 

t∆  
0γ =  1γ =  

Error Order Error Order 
42−  28.4209e−  - 24.7898e−  - 
52−  24.2197e−  0.9978 22.4132e−  0.9924 
62−  22.1129e−  0.9986 21.2134e−  0.9944 
72−  21.0525e−  1.0037 36.0529e−  1.0023 

 
Table 2: Numerical errors and convergence orders in time direction with 41.9, 10tα −= ∆ =  

 
h  

0γ =  1γ =  
Error Order Error Order 

42−  26.1262e−  - 24.7052e−  - 
52−  23.1962e−  0.9583 22.4737e−  0.9510 
62−  21.6288e−  0.9811 21.2673e−  0.9759 
72−  28.1761e−  0.9961 36.3904e−  0.9916 

 

Conclusion 
In this paper, an implicit finite difference method is developed for the one-dimensional space 

fractional wave equation with the Dirichlet and fractional boundary conditions. The unconditional 
stability of the method are proved with the Gerschgorin theorem and mathematical induction. The 
numerical experiment confirms the theoretical analysis and illustrates the practicability of the 
numerical scheme. Higher-order methods for the fractional wave equation will be considered in our 
future work. 
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