
Computer-aided Subassembly Generation

Arkady N. Bozhko1, Anatoly P. Karpenko 2

1
CAD, BMSTU,

5/1, Baumanskaya 2-ya

Moscow, Russia

E-mail: abozhko@inbox.ru

2
CAD, BMSTU,

5/1, Baumanskaya 2-ya

Moscow, Russia

E-mail: apkarpenko@mail.ru

Abstract

The article deals with the task of product decomposition into assembly units in CAAP systems. This is an important

design decision that allows to rationally organize the process of assembling complex products and improve eco-

nomic indexes of production. A hypergraph model of the assembly structure of a product is proposed. It is shown

that decomposition of a product can be described as cutting a hypergraph into subgraphs. The problem of rational

cutting is formulated in the terms of discrete mathematical programming. The main constraints are given, and ob-

jective functions which allow to select an optimal decomposition in the given production conditions are formulated.

Keywords: Computer-aided assembly planning, hypergraph, assembly units, subassembly generation, discrete ma-

thematical programming.

1. Introduction

Splitting a product into assembly units is an important

engineering task in modern design and production.

Many technical and economic characteristics of the as-

sembly process depend on the chosen product decompo-

sition. This design decision affects work site arrange-

ment and floorspace layout scheme.

In the field of computer-aided assembly planning

(CAAP) studies, comparatively little attention is paid to

automated synthesis of the product decomposition

scheme into assembly units. In the overwhelming ma-

jority of publications on CAAP, an assembly unit is

considered not as a self-sufficient phenomenon, but as a

state of the product during the assembly process. In the

detailed review [1] dedicated to this problem product

decomposition is considered only in five of 96 cited

sources.

In several papers, for example in [2 - 4], an attempt

was made to apply cluster analysis for splitting the

product into assembly units. The authors of these stu-

dies base their work on similarity of appearance of clus-

ter taxonomies and assembly decompositions. The au-

thors believe that strong internal connectivity of parts in

a product is sufficient to cosider such a group as an as-

sembly unit. In assembling, as a rule, this criterion is not

correct. Special rules of the assembly process cancel the

general rules of cluster analysis that are valid for poorly

structured systems and poorly researched subject areas.

The conditions of existence of assembly units are inde-

pendent assembling, closure of dimension chains, stabil-

ity of parts etc.

The problem of synthesizing assembly units is con-

sidered in detail in [5]. A subset of parts is considered

an assembly unit if conditions for geometric solvability

there are no geometric obstacles), connectivity, and sta-

bility are satisfied for them. Necessary design informa-

tion about the product is recorded in the form of Interfe-

rence Matrices, Contact Matrices and Connection ma-

trices. An algorithm for generating assembly units for

these matrices is described in the paper. This method is

very labor intensive. Besides, it does not consider the

system of dimension chains on which rational decompo-

sition of the product into assembly units depends.

In [6] splitting a product into assembly units is con-

sidered not as an important and independent design de-

cision, but as a way to reduce combinatorial complexity

of assembly sequence synthesis. A combinatorial de-

composition algorithm based on selection and subse-

quent integration of weighted undirected connected

graphs is proposed in the paper. The validity of the al-

Vth International workshop "Critical Infrastructures: Contingency Management, Intelligent, Agent-based, Cloud Computing and Cyber Security" (IWCI 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 158

7

gorithm is not supported by formal calculations or ex-

amples, so this approach gives rise to serious doubts.

In [7] the authors propose a method for synthesizing

assembly units based on an oriented graph which speci-

fies precedence relations among parts in the process of

product assembly (precedence knowledge). The work

does not consider the method of obtaining this model; it

is believed that it is known a priori. The method is

oriented to subassembly of car bodies and is not univer-

sal.

Splitting a product into assembly units can be

thought of as cutting the connection graph or its modifi-

cations. The problem lies in the search for such a cutting

whose elements are subgraphs describing the collected

and stable subsets of the details. This idea is the basis of

the majority of papers dedicated to synthesis of assem-

bly decomposition. For example, in [8] information

about the properties of the product is formalized in the

form of a relational graph. This model is a liaison graph

whose vertices are fragments of a relational database.

Each such fragment stores design information about the

part that is necessary for designing an assembly unit.

The authors use a heuristic approach to the definition of

an assembly unit. For example, this is a set of parts that

forms a simple or compound loop in the relational graph

all the edges of which are screw joints. Other substruc-

tures of the relational graph that can have high connec-

tivity and stability are also considered.

In [9] algorithmic and program realization of this

approach is described. In general, cyclic structures of

the relational graph and the liaison graph do not guaran-

tee assemblability. On the contrary, they are often a

source of assembly problems, since they can generate

unsolvable dimension chains.

The cutting method was fairly extensively investi-

gated in [10, 11]. The main carrier of information about

the product in these works is the attributed liaison

graph. In fact, this graph is a semantic network, the

edges and vertices of which are connected to frames that

store design information about the details and mechani-

cal connections. The slots of the edge frame record data

containing the contact form, names of contact details,

type of joint (separable, permanent), form of joint (pin,

key, etc.) and others. Slots of the vertex frame are filled

with the following information about the details: geo-

metrical properties (types of boundary surfaces, dimen-

sions, etc.), physical parameters (weight, accuracy, etc.),

coordinates and orientation of the described rectangle

(gizmo), list of contacting parts and many others. These

data are used to discard the unrealizable and non-

rational solutions. It should be noted that the attributed

liaison graph is a very cumbersome model. Its creation

requires such a lot of manual labor inputs that it may be

compared with the traditional approach to splitting a

product into assembly units.

The problem of synthesizing assembly units was ex-

tensively investigated in [12]. The product’s structural

properties are presented in a liaison graph whose vertic-

es and edges are divided into groups, depending on the

tasks they perform in the product. The vertices of the

graph describe the details of the product and the assem-

bly units. The parts are divided into functional parts and

attachment parts. The former serve as carriers of execu-

tive surfaces, the latter are used for positioning and for

functional parts. Joints and mating between parts are

represented as edges of different types of the graph.

Among all studies based on cutting of the liaison graph,

the last two papers differ in profundity and elaboration

of nuances.

The liaison graph and its numerous modifications

are binary mathematical objects. These means can not

adequately describe spatial coordination of parts in a

product and an assembly unit which, in general, is a k-

dimensional relation, 2k  . This is the main shortcom-

ing of the papers where the structure of a product is pre-

sented in the form of graphs or networks.

In our papers [13, 14] we propose an apparatus of s-

hypergraphs, and it is shown that s-hypergraphs ade-

quately describe the behavior of technical systems dur-

ing assembly and disassembly.

The article deals with application of this model for

the computer-aided planning of rational product decom-

positions into assembly units.

2. Hypergraphic product model

We associate the product X with the hypergraph WS =

(X, R) in which the set of vertices
1{ }n

i iX x  represents

the parts, and the set of hyperedges 1{ }m

j jR r 

represents minimal coordinated groupings of parts ob-

tained by realizing internal mechanical connections

[13,14].

Figure 1 shows an example of the product and its

hypergraph.

Advances in Intelligent Systems Research, volume 158

8

Definition 1. An assembly operation is called n-handed,

if it requires simultaneous and independent movement

of n operating devices (hands) [15].

Figures 2 shows an example of an assembly opera-

tion that requires three hands (3-handed).

Definition 2. An assembly operation is called coherent

if it implements at least one mechanical connec-

tion [15].

Figures 3 shows an example an incoherent assembly

operation.

Obviously, for the installation of parts A and B on

C, preliminary coordination of A and B is required,

which is performed without contact between them.

The paper considers only coherent and 2-handed as-

sembly operations that prevail in modern industrial pro-

duction.

Definition 3. Normal contraction is merging of two

vertices of a hypergraph which are connected by a

hyperedge of the second degree (edge) and removal of

this hyperedge.

Definition 4. A hypergraph WS = (X, R) is called an s-

hypergraph if it can be transformed into a single-vertex

hypergraph without loops by way of some sequence of

normal contraction [13, 14].

Theorem 1. If the hypergraph WS = (X, R) is a s-

hypergraph, then it is connected, has at least one edge

and | X | = | R | + 1 [13,14].

Theorem 2. Let WS = (X, R) be a s-hypergraph. Any

subgraph H = (XH, RH) of a hypergraph WS that in-

cludes at least one edge and for which the linear con-

straint | XH | = | RH | + 1 is valid, is connected and con-

tractible (s-hypergraph) [14].

3. Mathematical model of rational decompo-

sition of the product into assembly units

The assembly unit (AU) must be independently assem-

blable, so its mathematical description is the s-subgraph

of the contractible hypergraph WS associated with the

product. It is obvious that any decomposition can be

represented as cutting a s-hypergraph into s-subgraphs.

The problem of synthesis of rational decomposition is

put in the terms of discrete mathematical programming.

3.1. Used variables

Let us assume that the assembly structure of some prod-

uct
1{ }n

i iX x  is represented as a s-hypergraph WS =

(X, R). We denote
1|| ||nij nA a  – the incidence matrix

WS in which aij = 1 only if the vertex xi is connected to

the hyperedge rj. Let l be the number of assembly

units.

A hyperedge of the hypergraph WS that is incident

to two vertices will be called edge.

We introduce the variables:

1, if -part enters -AU;

0, if not.
ij

i j
x


 


1, if -hyperedge enters -AU;

0, if not.
kj

k j
y


 


1, if -edge enters -AU;

0, if not.
mj

m j
z


 


1, if -AU is not degenerated;

0, if not.
j

j
s


 


1, , 1, , 1, , 1, 1, .i n k K m M K M n j S      

The assembly unit is considered as nondegenerate if

it includes at least two parts.

Fig. 2. An example a 3-handed assembly operation.

Fig. 1. Example of the product (a), hypergraph of the

product (b).

Fig. 3. An example of an incoherent assembly operation.

Advances in Intelligent Systems Research, volume 158

9

3.2. Basic constraints

Using the variables indicated in 3.1, we write a set of

basic constraints (1) - (11) that formalize the rules for

cutting the s-hypergraph into s-subgraphs. Following

each of these constraints, we produce its meaning.

1

1, 1,
S

ij

j

x i n


  (1)

Each part enters only one AU or goes to a general as-

sembly, bypassing inclusion in intermediate assembly

units.

1 1

2
S n

ij

j i

x
 

 (2)

Decomposition into assembly units is not trivial. This

means that it contains at least one nonempty assembly

unit.

1

1, 1, .
S

kj

j

y k K


  (3)

Each hyperedge enters one AU, or connects different

AUs.

1

1, 1, .
S

mj

j

z m M


  (4)

Each edge enters one assembly unit or connects differ-

ent AUs.

1

1, 1, .
M

mj

m

z j S


  (5)

Each AU contains at least one edge (the second condi-

tion of Theorem 1) (5).

1 1 1

1, 1, .
n K M

ij kj mj

i k m

x y z j S
  

      (6)

For each AU condition 3 of Theorem 1 must be satis-

fied.

Connectivity of the subgraphs that describe the as-

sembly units is guaranteed by Theorem 2, so for this

feature there is no need to introduce a special constraint.

1 1

1 ; 1, , 1, .
n n

kj ij ik ik

i i

y x a a k K j S
 

       (7)

The expression (7) formalizes the topological condition:

if the hyperedge k enters the subgraph j, then all the

vertices incident to this hyperedge enter the given sub-

graph.

The constraint (7) is written in a logical form using

the «if … then» operation. We introduce auxiliary va-

riables {0,1}, 1, , 1,kjt k K j S   . Then in the algebraic

form this constraint takes the form

1 1

, ; 1, , 1, .
n n

kj kj ij ik ik kj

i i

y t x a a t k K j S
 

    

This entry is correct. Indeed, for tkj = 1 the original con-

straints are transformed into a system of inequalities

1 1

n n

ij ik ik

i i

x a a
 

  , which can be fulfilled only as equali-

ties, which produces the initial subsystem of constraints.

For tkj = 0 the inequalities
1

0
n

ij ik

i

x a


 are trivial.

1 1

1 ; 1, , 1, .
n n

mj ij im im

i i

z x a a m M j S
 

       (8)

If the edge m enters the subgraph j, then all the incident

vertices of the edge enter this subgraph.

By analogy with (7), the constraint (8) in the algebraic

form has the form

1 1

, ; 1, , 1, .
n n

mj mj ij im im mj

i i

z x a a m M j S 
 

    

Here {0,1}, 1, , 1,kj m M j S    are auxiliary va-

riables.

1 1

1
n n

ij ik ik kj

i i

x a a y
 

     1, , 1, .k K j S  (9)

If all the incident vertices of the hyperedge k belong to

the subgraph j, then the hyperedge itself must belong to

this subgraph. The logical constraint (9) in the algebraic

form has the form

1 1 1 1

0, 1 ,

1, , 1, .

n n n n

ij ik ik kj ij ik ik kj

i i i i

x a a y x a a y

k K j S

   

 
        

 

 

   

It is easy to verify that this information is correct.

1 1

1; 1, , 1,
n n

ij im im mj

i i

x a a z m M j S
 

       .

 (10)

If all the incident vertexes of the edge m belong to the

subgraph j, then the edge itself must belong to this sub-

graph (10). This logical constraint in the algebraic form

has the form

1 1 1 1

0, 1 ,

1, , 1, .

n n n n

ij im im mj ij im im mj

i i i i

x a a z x a a z

m M j S

   

 
        

 

 

   

1 1

2 1 и 2 0, 1, .
n n

ij j ij j

i i

x s x s j S
 

        (11)

Advances in Intelligent Systems Research, volume 158

10

If the AU with the number j is not degenerate, then the

indicator variable sj is one. The logical constraint (11) in

the algebraic form can be written in the form

1 1

2 0, 2 .
n n

ij j ij j

i i

x s x n s
 

 
      

 
 

3.3. Additional constraints

The set of constraints (1) – (11) is open. It can be ex-

panded by means of additional conditions (12) – (16)

that into account the specifics of decision-making in a

given production situation.

 xpj = xrj = 1 (12)

The equation (12) requires that the parts with numbers p

and r belong to one assembly unit. This condition is

mandatory if these details enter into one design dimen-

sion chain.

 xpj + xrj < 2. (13)

Inequality (13) forbids the details with numbers p and r

to enter into one assembly unit.

1

0.
S

ij

j

x


 (14)

Condition (14) means that the part with the number i

does not enter into any assembly unit.

 .rj pjx x (15)

If the part with the number p enters the assembly unit j,

then the part with the number r must be included in it.

 min max

1

n

j ij j

i

N x N


  . (16)

Inequality (16) sets constraints on the capacity of the

assembly unit. Here
min

jN (
max

jN) is the minimum

(maximum) number of parts in AUi.

3.4. Objective functions

To synthesize rational product decompositions into as-

sembly units, the following objective functions (17) –

(23) can be used.

1 1

max.
S n

ij

j i

x
 

 (17)

The objective function (17) selects such a decomposi-

tion in which the maximum number of parts is included

in assembly units.

1

max.
S

j

j

s


 (18)

The function (18) provides decomposition with the

maximum number of assembly units.

1 1

max.
K S

kj

k j

y
 

 (19)

The function (19) is aimed at creating a decomposition

in which the maximum number of hyperedges enters

into subgraphs. This means that connection of high mul-

tiplicity should be realized earlier when complexity of

AUs is not yet very high.

1 1 1 1

max.
K S M S

kj mj

k j m j

y z
   

   (20)

The function (20) formalizes the fact that the number of

edges and hyperedges included in assembly units must

be maximal. Since the total number of links in the

hypergraph does not change, the objective function (20)

minimizes the number of connections between individu-

al AUs. This function works in a similar way to the cri-

teria of the cluster analysis where the set of objects is

divided into subsets (clusters) in which the «strength» of

internal connections exceeds the external one.

1 1 1 1

max.
K S M S

k kj m mj

k j m j

c y c z
   

   (21)

Here ck, (cm) is the number of different surfaces that

must be brought into contact to implement a constraint

represented by the k-hyperedge (m-edge). These num-

bers are indirect indicators of complexity of the connec-

tion. For the final assembly it is better to leave such

connections that do not require complex spatial coordi-

nation over several surfaces simultaneously. The crite-

rion (21) maximizes the total number of conjugated

surfaces in assembly units. This automatically reduces

the number of contacts in the general assembly phase.

1

1 1 1 1

min.
S S n n

ij ik

j k j i i

x x


    

 
  

 
    (22)

The criterion (22) formalizes a well-known rule, accord-

ing to which the number of parts in different AUs

should not be very different

1 1

max min.
K M

k kj m mj
j

k m

t y t z
 

 
  

 
  (23)

Here ti, 1,i K M  is the time of realization of the

connection represented by the edge (hyperedge) with

the number i. The criterion (23) serves to select a de-

composition with the minimal assembling cycle.

To solve the task of discrete mathematical pro-

gramming, it is possible to apply both classical methods

Advances in Intelligent Systems Research, volume 158

11

(Lagrange's method of undetermined multipliers, branch

and bound method, etc.) and discrete versions of mod-

ern optimization algorithms inspired by nature [16].

References

1. Wang Y., Liu J., Subassembly identification for assembly

sequence planning, The International Journal of Ad-

vanced Manufacturing Technology. Volume 68, Issue 1–

4. (2013) 781 – 793. DOI:10.1007/s00170-013-4799-y.

2. Deshmukh A., Yung P., Wang H-P., Automated genera-

tion of assembly sequence based on geometric and func-

tional reasoning, Journal of Intelligent Manufacturing,

Vol 4, Issue 4. (1993) 269–284.

DOI:10.1007/BF00124140.

3. Hemmskerk C., Van Luttervelt C., The use of heuristics

in assembly sequence planning, CIRP Annals - Manufac-

turing Technology. Volume 38, Issue 1. (1989) 37–40.

DOI:10.1016/s0007-8506(07)62647-x.

4. O'Shea B., Kaebernick H., Grewal S., Using a cluster

graph representation of products for application in the

disassembly process planning , Concurrent Engineering,

Volume 8, Issue 3. (2000) 158–170.

DOI:10.1177/1063293x0000800301.

5. Dini G., Santochi M., Automated sequencing subassem-

bly detection in assembly planning, CIRP Annals – Man-

ufacturing Technology, Volume 41, Issue 1. (1992) 1–4.

DOI:10.1016/s0007-8506(07)61140-8.

6. Cao Y., Kou X., Cao S., A sub-assembly identification

algorithm for assembly sequence planning, in Proc. In-

ternational Industrial Informatics and Computer Engi-

neering Conference. 2015. DOI:10.2991/iiicec-

15.2015.127.

7. Zhang Y., Ni J., Lai X., Automated sequencing and sub-

assembly detection in automobile bod assembly planning,

Journal of Materials Processing Technology, Volume

129, Issue 1 – 3. (2002) 490–494.

8. Zussman E., Lenz E., Shpitalni M., An Approach to the

Automatic Assembly Planning Problem, CIRP Annals –

Manufacturing Technology, Volume 39, Issue 1. (1990)

33–36. DOI:10.1016/s0007-8506(07)60997-4.

9. Ong N., Wong Y., Automatic subassembly detection

from product model for disassembly sequence generation,

The International Journal of Advanced Manufacturing

Technology. Volume 15, Issue 6. (1999) 425–431.

DOI:10.1007/s001700050086.

10. Lee S. Subassembly identification and evaluation for as-

sembly planning, IEEE Transactions on Systems, Man

and Cybernetics, Volume 24, Issue 3. (1994) 493–503.

DOI:10.1109/21.278997.

11. Lee S., Shin Y., Assembly planning based on subassem-

bly extraction, in Proceedings of IEEE International

Conference “Robotics and Automation”. 1990. V. 3. Pp.

1606–1611. DOI:10.1109/ROBOT.1990.126239.

12. Marian R., Luong L., Abhary K., A genetic algorithm for

optimization of assembly sequences, Computers & Indus-

trial Engineering, Volume 50, Issue 4. (2006) 503–527.

DOI:10.1016/j.cie.2005.07.007.

13. Bozhko A.N., Algebraic models of assembly of products,

Nauka i obrazovaniye. MGTU im. N.E. Baumana. Elek-

tron. zhurn. № 12. (2016). DOI: 10.7463/1216.0852565

(in Russian).

14. Bozhko A. N. Strukturnyye modeli sobirayemosti izdeliy

[Structural models of assembly of products] // Nauka i

obrazovaniye. MGTU im. N.E. Baumana. Elektron.

zhurn. 2013. №10. DOI:107463/1013.0622946 (in Rus-

sian).

15. Ghandi S., Masehian El., Review and taxonomies of as-

sembly and disassembly path planning problems and ap-

proaches, Computer-Aided Design, Vol. 67 – 68. (2015)

58–86. DOI:10.1016/j.cad.2015.05.001.

16. Karpenko A.P., Modern algorithms of search optimiza-

tion. Algorithms inspired by nature: a tutorial (Moscow,

BMSTU Publ., 2014). 446 p. (in Russian).

Advances in Intelligent Systems Research, volume 158

12

