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Abstract 

The article deals with the task of product decomposition into assembly units in CAAP systems. This is an important 

design decision that allows to rationally organize the process of assembling complex products and improve eco-

nomic indexes of production. A hypergraph model of the assembly structure of a product is proposed. It is shown 

that decomposition of a product can be described as cutting a hypergraph into subgraphs. The problem of rational 

cutting is formulated in the terms of discrete mathematical programming. The main constraints are given, and ob-

jective functions which allow to select an optimal decomposition in the given production conditions are formulated. 

Keywords: Computer-aided assembly planning, hypergraph, assembly units, subassembly generation, discrete ma-

thematical programming. 

1. Introduction 

Splitting a product into assembly units is an important 

engineering task in modern design and production. 

Many technical and economic characteristics of the as-

sembly process depend on the chosen product decompo-

sition. This design decision affects work site arrange-

ment and floorspace layout scheme. 

In the field of computer-aided assembly planning 

(CAAP) studies, comparatively little attention is paid to 

automated synthesis of the product decomposition 

scheme into assembly units. In the overwhelming ma-

jority of publications on CAAP, an assembly unit is 

considered not as a self-sufficient phenomenon, but as a 

state of the product during the assembly process. In the 

detailed review [1] dedicated to this problem product 

decomposition is considered only in five of 96 cited 

sources. 

In several papers, for example in [2 - 4], an attempt 

was made to apply cluster analysis for splitting the 

product into assembly units. The authors of these stu-

dies base their work on similarity of appearance of clus-

ter taxonomies and assembly decompositions. The au-

thors believe that strong internal connectivity of parts in 

a product is sufficient to cosider such a group as an as-

sembly unit. In assembling, as a rule, this criterion is not 

correct. Special rules of the assembly process cancel the 

general rules of cluster analysis that are valid for poorly 

structured systems and poorly researched subject areas. 

The conditions of existence of assembly units are inde-

pendent assembling, closure of dimension chains, stabil-

ity of parts etc. 

The problem of synthesizing assembly units is con-

sidered in detail in [5]. A subset of parts is considered 

an assembly unit if conditions for geometric solvability 

there are no geometric obstacles), connectivity, and sta-

bility are satisfied for them. Necessary design informa-

tion about the product is recorded in the form of Interfe-

rence Matrices, Contact Matrices and Connection ma-

trices. An algorithm for generating assembly units for 

these matrices is described in the paper. This method is 

very labor intensive. Besides, it does not consider the 

system of dimension chains on which rational decompo-

sition of the product into assembly units depends. 

In [6] splitting a product into assembly units is con-

sidered not as an important and independent design de-

cision, but as a way to reduce combinatorial complexity 

of assembly sequence synthesis. A combinatorial de-

composition algorithm based on selection and subse-

quent integration of weighted undirected connected 

graphs is proposed in the paper. The validity of the al-
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gorithm is not supported by formal calculations or ex-

amples, so this approach gives rise to serious doubts. 

In [7] the authors propose a method for synthesizing 

assembly units based on an oriented graph which speci-

fies precedence relations among parts in the process of 

product assembly (precedence knowledge). The work 

does not consider the method of obtaining this model; it 

is believed that it is known a priori. The method is 

oriented to subassembly of car bodies and is not univer-

sal. 

Splitting a product into assembly units can be 

thought of as cutting the connection graph or its modifi-

cations. The problem lies in the search for such a cutting 

whose elements are subgraphs describing the collected 

and stable subsets of the details. This idea is the basis of 

the majority of papers dedicated to synthesis of assem-

bly decomposition. For example, in [8] information 

about the properties of the product is formalized in the 

form of a relational graph. This model is a liaison graph 

whose vertices are fragments of a relational database. 

Each such fragment stores design information about the 

part that is necessary for designing an assembly unit. 

The authors use a heuristic approach to the definition of 

an assembly unit. For example, this is a set of parts that 

forms a simple or compound loop in the relational graph 

all the edges of which are screw joints. Other substruc-

tures of the relational graph that can have high connec-

tivity and stability are also considered. 

In [9] algorithmic and program realization of this 

approach is described. In general, cyclic structures of 

the relational graph and the liaison graph do not guaran-

tee assemblability. On the contrary, they are often a 

source of assembly problems, since they can generate 

unsolvable dimension chains. 

The cutting method was fairly extensively investi-

gated in [10, 11]. The main carrier of information about 

the product in these works is the attributed liaison 

graph. In fact, this graph is a semantic network, the 

edges and vertices of which are connected to frames that 

store design information about the details and mechani-

cal connections. The slots of the edge frame record data 

containing the contact form, names of contact details, 

type of joint (separable, permanent), form of joint (pin, 

key, etc.) and others. Slots of the vertex frame are filled 

with the following information about the details: geo-

metrical properties (types of boundary surfaces, dimen-

sions, etc.), physical parameters (weight, accuracy, etc.), 

coordinates and orientation of the described rectangle 

(gizmo), list of contacting parts and many others. These 

data are used to discard the unrealizable and non-

rational solutions. It should be noted that the attributed 

liaison graph is a very cumbersome model. Its creation 

requires such a lot of manual labor inputs that it may be 

compared with the traditional approach to splitting a 

product into assembly units.  

The problem of synthesizing assembly units was ex-

tensively investigated in [12]. The product’s structural 

properties are presented in a liaison graph whose vertic-

es and edges are divided into groups, depending on the 

tasks they perform in the product. The vertices of the 

graph describe the details of the product and the assem-

bly units. The parts are divided into functional parts and 

attachment parts. The former serve as carriers of execu-

tive surfaces, the latter are used for positioning and for 

functional parts. Joints and mating between parts are 

represented as edges of different types of the graph. 

Among all studies based on cutting of the liaison graph, 

the last two papers differ in profundity and elaboration 

of nuances. 

The liaison graph and its numerous modifications 

are binary mathematical objects. These means can not 

adequately describe spatial coordination of parts in a 

product and an assembly unit which, in general, is a k-

dimensional relation, 2k  . This is the main shortcom-

ing of the papers where the structure of a product is pre-

sented in the form of graphs or networks. 

In our papers [13, 14] we propose an apparatus of s-

hypergraphs, and it is shown that s-hypergraphs ade-

quately describe the behavior of technical systems dur-

ing assembly and disassembly. 

The article deals with application of this model for 

the computer-aided planning of rational product decom-

positions into assembly units. 

2. Hypergraphic product model 

We associate the product X with the hypergraph WS = 

(X, R) in which the set of vertices 
1{ }n

i iX x  represents 

the parts, and the set of hyperedges 1{ }m

j jR r   

represents minimal coordinated groupings of parts ob-

tained by realizing internal mechanical connections 

[13,14].  

Figure 1 shows an example of the product and its 

hypergraph. 
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Definition 1. An assembly operation is called n-handed, 

if it requires simultaneous and independent movement 

of n operating devices (hands) [15]. 

Figures 2 shows an example of an assembly opera-

tion that requires three hands (3-handed). 

Definition 2. An assembly operation is called coherent 

if it implements at least one mechanical connec-

tion [15]. 

Figures 3 shows an example an incoherent assembly 

operation. 

Obviously, for the installation of parts A and B on 

C, preliminary coordination of A and B is required, 

which is performed without contact between them. 

The paper considers only coherent and 2-handed  as-

sembly operations that prevail in modern industrial pro-

duction. 

Definition 3. Normal contraction is merging of two 

vertices of a hypergraph which are connected by a 

hyperedge of the second degree (edge) and removal of 

this hyperedge. 

Definition 4. A hypergraph WS = (X, R) is called an s-

hypergraph if it can be transformed into a single-vertex 

hypergraph without loops by way of some sequence of 

normal contraction [13, 14]. 

 

Theorem 1. If the hypergraph WS = (X, R) is a s-

hypergraph, then it is connected, has at least one edge 

and | X | = | R | + 1 [13,14]. 

 

Theorem 2. Let WS = (X, R) be a s-hypergraph. Any 

subgraph H = (XH, RH) of a hypergraph WS that in-

cludes at least one edge and for which the linear con-

straint | XH | = | RH | + 1 is valid, is connected and con-

tractible (s-hypergraph) [14]. 

3. Mathematical model of rational decompo-

sition of the product into assembly units 

The assembly unit (AU) must be independently assem-

blable, so its mathematical description is the s-subgraph 

of the contractible hypergraph WS associated with the 

product. It is obvious that any decomposition can be 

represented as cutting a s-hypergraph into s-subgraphs. 

The problem of synthesis of rational decomposition is 

put in the terms of discrete mathematical programming. 

3.1. Used variables 

Let us assume that the assembly structure of some prod-

uct 
1{ }n

i iX x   is represented as a s-hypergraph WS = 

(X, R). We denote 
1|| ||nij nA a   – the incidence matrix 

WS in which aij = 1 only if the vertex xi is connected to 

the hyperedge rj.  Let l  be the number of assembly 

units. 

A hyperedge of the hypergraph WS that is incident 

to two vertices will be called edge. 

We introduce the variables: 

1, if -part enters  -AU;

0,  if not.
ij

i j
x


 


 

1, if -hyperedge enters -AU;

0,  if not.
kj

k j
y


 


 

1, if -edge enters -AU;

0,  if not.
mj

m j
z


 


 

1, if -AU is not degenerated;

0, if not.
j

j
s


 


 

1, , 1, , 1, , 1, 1, .i n k K m M K M n j S        

The assembly unit is considered as nondegenerate if 

it includes at least two parts. 

 

Fig. 2. An example a 3-handed assembly operation. 

 

Fig. 1. Example of the product (a), hypergraph of the 

product (b). 

 

Fig. 3. An example of an incoherent assembly operation. 
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3.2. Basic constraints 

Using the variables indicated in 3.1, we write a set of 

basic constraints (1) - (11) that formalize the rules for 

cutting the s-hypergraph into s-subgraphs. Following 

each of these constraints, we produce its meaning. 

 
1

1, 1,
S

ij

j

x i n


               (1) 

Each part enters only one AU or goes to a general as-

sembly, bypassing inclusion in intermediate assembly 

units. 

 
1 1

2
S n

ij

j i

x
 

           (2) 

Decomposition into assembly units is not trivial. This 

means that it contains at least one nonempty assembly 

unit. 

 
1

1, 1, .
S

kj

j

y k K


                (3) 

Each hyperedge enters one AU, or connects different 

AUs. 

 
1

1, 1, .
S

mj

j

z m M


                (4) 

Each edge enters one assembly unit or connects differ-

ent AUs. 

 
1

1, 1, .
M

mj

m

z j S


   (5) 

Each AU contains at least one edge (the second condi-

tion of Theorem 1) (5). 

 
1 1 1

1, 1, .
n K M

ij kj mj

i k m

x y z j S
  

       (6) 

For each AU condition 3 of Theorem 1 must be satis-

fied. 

Connectivity of the subgraphs that describe the as-

sembly units is guaranteed by Theorem 2, so for this 

feature there is no need to introduce a special constraint. 

 
1 1

1 ; 1, , 1, .
n n

kj ij ik ik

i i

y x a a k K j S
 

        (7) 

The expression (7) formalizes the topological condition: 

if the hyperedge k enters the subgraph j, then all the 

vertices incident to this hyperedge enter the given sub-

graph. 

The constraint (7) is written in a logical form using 

the «if … then» operation. We introduce auxiliary va-

riables {0,1}, 1, , 1,kjt k K j S   . Then in the algebraic 

form this constraint takes the form 

 
1 1

, ; 1, , 1, .
n n

kj kj ij ik ik kj

i i

y t x a a t k K j S
 

      

This entry is correct. Indeed, for tkj = 1 the original con-

straints are transformed into a system of inequalities 

1 1

n n

ij ik ik

i i

x a a
 

  ,  which can be fulfilled only as equali-

ties, which produces the initial subsystem of constraints. 

For  tkj = 0 the inequalities 
1

0
n

ij ik

i

x a


  are trivial. 

 
1 1

1 ; 1, , 1, .
n n

mj ij im im

i i

z x a a m M j S
 

        (8) 

If the edge m enters the subgraph j, then all the incident 

vertices of the edge enter this subgraph. 

By analogy with (7), the constraint (8) in the algebraic 

form has the form 

 
1 1

, ; 1, , 1, .
n n

mj mj ij im im mj

i i

z x a a m M j S 
 

      

Here {0,1}, 1, , 1,kj m M j S     are auxiliary va-

riables. 

 
1 1

1
n n

ij ik ik kj

i i

x a a y
 

      1, , 1, .k K j S   (9) 

If all the incident vertices of the hyperedge k belong to 

the subgraph j, then the hyperedge itself must belong to 

this subgraph. The logical constraint (9) in the algebraic 

form has the form 

1 1 1 1

0, 1 ,

1, , 1, .

n n n n

ij ik ik kj ij ik ik kj

i i i i

x a a y x a a y

k K j S

   

 
        

 

 

   
 

It is easy to verify that this information is correct. 

 
1 1

1; 1, , 1,
n n

ij im im mj

i i

x a a z m M j S
 

       . 

 (10) 

If all the incident vertexes of the edge m belong to the 

subgraph j, then the edge itself must belong to this sub-

graph (10). This logical constraint in the algebraic form 

has the form 

1 1 1 1

0, 1 ,

1, , 1, .

n n n n

ij im im mj ij im im mj

i i i i

x a a z x a a z

m M j S

   

 
        

 

 

   

 
1 1

2 1 и 2 0, 1, .
n n

ij j ij j

i i

x s x s j S
 

         (11) 

Advances in Intelligent Systems Research, volume 158

10



If the AU with the number j is not degenerate, then the 

indicator variable sj is one. The logical constraint (11) in 

the algebraic form can be written in the form 

 
1 1

2 0, 2 .
n n

ij j ij j

i i

x s x n s
 

 
      

 
    

3.3. Additional constraints  

The set of constraints (1) – (11) is open. It can be ex-

panded by means of additional conditions (12) – (16) 

that into account the specifics of decision-making in a 

given production situation. 

 xpj = xrj = 1 (12) 

The equation (12) requires that the parts with numbers p 

and r belong to one assembly unit. This condition is 

mandatory if these details enter into one design dimen-

sion chain.  

 xpj + xrj < 2. (13) 

Inequality (13) forbids the details with numbers p and r 

to enter into one assembly unit.  

 
1

0.
S

ij

j

x


  (14) 

Condition (14) means that the part with the number i 

does not enter into any assembly unit.  

 .rj pjx x  (15) 

If the part with the number p enters the assembly unit j, 

then the part with the number r must be included in it. 

 min max

1

n

j ij j

i

N x N


  . (16) 

Inequality (16) sets constraints on the capacity of the 

assembly unit. Here 
min

jN  (
max

jN ) is the minimum 

(maximum) number of parts in AUi. 

3.4. Objective functions 

To synthesize rational product decompositions into as-

sembly units, the following objective functions (17) – 

(23) can be used. 

 
1 1

max.
S n

ij

j i

x
 

  (17) 

The objective function (17) selects such a decomposi-

tion in which the maximum number of parts is included 

in assembly units. 

 
1

max.
S

j

j

s


  (18) 

The function (18) provides decomposition with the 

maximum number of assembly units. 

 
1 1

max.
K S

kj

k j

y
 

  (19) 

The function (19) is aimed at creating a decomposition 

in which the maximum number of hyperedges enters 

into subgraphs. This means that connection of high mul-

tiplicity should be realized earlier when complexity of 

AUs is not yet very high.  

 
1 1 1 1

max.
K S M S

kj mj

k j m j

y z
   

    (20) 

The function (20) formalizes the fact that the number of 

edges and hyperedges included in assembly units must 

be maximal. Since the total number of links in the 

hypergraph does not change, the objective function (20) 

minimizes the number of connections between individu-

al AUs. This function works in a similar way to the cri-

teria of the cluster analysis where the set of objects is 

divided into subsets (clusters) in which the «strength» of 

internal connections exceeds the external one. 

 
1 1 1 1

max.
K S M S

k kj m mj

k j m j

c y c z
   

    (21) 

Here ck, (cm) is the number of different surfaces that 

must be brought into contact to implement a constraint 

represented by the k-hyperedge (m-edge). These num-

bers are indirect indicators of complexity of the connec-

tion. For the final assembly it is better to leave such 

connections that do not require complex spatial coordi-

nation over several surfaces simultaneously. The crite-

rion (21) maximizes the total number of conjugated 

surfaces in assembly units. This automatically reduces 

the number of contacts in the general assembly phase. 

 
1

1 1 1 1

min.
S S n n

ij ik

j k j i i

x x


    

 
  

 
     (22) 

The criterion (22) formalizes a well-known rule, accord-

ing to which the number of parts in different AUs 

should not be very different  

 
1 1

max min.
K M

k kj m mj
j

k m

t y t z
 

 
  

 
   (23) 

Here ti, 1,i K M  is the time of realization of the 

connection represented by the edge (hyperedge) with 

the number i. The criterion (23) serves to select a de-

composition with the minimal assembling cycle. 

To solve the task of discrete mathematical pro-

gramming, it is possible to apply both classical methods 
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(Lagrange's method of undetermined multipliers, branch 

and bound method, etc.) and discrete versions of mod-

ern optimization algorithms inspired by nature [16]. 
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