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Abstract—In the process of tracking a maneuvering target, 
when there is interference, the system parameters and structure 
will randomly jump. The previous algorithms have less 
consideration. The thesis applies the structural random jump 
system theory to the anti-jamming tracking problem of the two 
sensors, establishes its nonlinear model, completes the algorithm 
design, and completes the linearization of the nonlinear model. 
Experimental verification shows that it can effectively solve the 
problem of stable tracking of the target in the presence of 
interference and when the two different sensors are switched to 
each other. 

Keywords—maneuvering target tracking; random transition 
system; nonlinear filtering 

I. INTRODUCTION 

In the process of maneuvering target tracking, there often 
occurs a situation where the system parameters and structures 
randomly jump, that is, there are uncertainties in parameters 
and structures in the system. The system with this 
characteristic of uncertainty is called system with random 
changing structure, (SRCS). 

Especially in the presence of interference, the parameters 
and structural uncertainty of the maneuvering target tracking 
system increase significantly. However, in previous studies, 
this factor was rarely considered. Under this background, the 
structure random jump system theory is applied to the anti-
jamming tracking problem of the two sensors to effectively 
deal with the enemy's various interference measures, achieve 
accurate and stable tracking of the target, and provide a new 
idea for the maneuvering target tracking. 

II. ANTI-JAMMING TRACKING ALGORITHM BASED ON 

NONLINEAR GAUSSIAN APPROXIMATION FILTER OF SRCS 

SYSTEM 

Due to factors such as interference and random switching 
of several sensors, the structure or parameters of the system 
may change drastically. In online Gaussian conditions, the 
target motion equation can be described as 

 
( 1) ( , ) ( ) ( , )  k s k k s kx Φ x w

 (1) 

Its observation equation can be described as 

 ( 1) ( , 1) ( 1) ( , 1) 1,       （ ）k s k k s k s S Mz H x v  (2) 

In the formula: ( )kx  is the n-dimensional target motion 

state vector, ( )kz is the m-dimensional observation vector, 

( , )s kw and ( , )s kv  are m-dimensional and n-dimensional 
white noise vectors, respectively, s  is the structural label of 
the system which is described by m finite state conditional 
Markov chains. ( , )s kΦ and ( , )s kH are n n -dimensional and 
m n -dimensional known function matrices 

Now suppose that all noises are Gaussian random 
sequences that are independent of each other and have a mean 
value of zero. The initial values of the target motion state are 
also Gaussian and independent of all noises. That is to say,  

 

( , ) ~ [ ( , ) ( , ), ( , )]
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




 (3) 

In the formula: (s)
0x  is the initial state of the target under 

the s structure, The function { , }N   αΕ  indicates that the 

random vector has a Gaussian distribution with a mean of   
and a variance of αΕ  

let ( 1), ( )  s s k r s k  

1 ( 1)k k  z z [ (0), (1), , ( 1), ( )] Lk k kZ z z z z , 

And ignore the moments k  that do not cause ambiguity. 

According to equation of state (1), observation equation (2) 
and prior condition (3), The conditional transition probability 
density function [ ( 1) , ]f k rx x  of the target motion state 

( 1)kx  and The conditional probability density function 

1[ ( 1), ] kf k sz x  of the observation vector ( 1)kz  is 
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Assuming that the hopping process of the structure is 
independent of the system state and depends only on the 
structural state of the previous step system, the transition 
probability of the structural state is established as follows: 

 
( )[ , 1 ( ), , ] [ , 1 , ] ( 1, )    srq s k k r k q s k r k q k kx

 (6) 

Due to the change of the system structure, the distribution 
of the target motion state is no longer Gaussian. Therefore, for 
the conditional probability density [ ( ) , ]kf k rx Z , the 

Gaussian approximation method is used to obtain the 
following relationship.  

 
[ ( ) , ] [ ( ) ( , ), ( , )]kf k r k k r k k r kx Z N x x P

 (7) 

Through the discretized optimal filter equations, the 
tracking algorithm equations are deduced. 

State prediction:  

 ( 1 , ) ( , ) ( , ) ( , )  k r k r k k r k r kx Φ x   

Covariance prediction:  

 
( 1 , ) ( , ) ( , ) ( , ) ( , )  Tk r k r k k r k r k r kP Φ P Φ Q

 (9) 

Mixed state prediction:  

 1 1

( ) ( )( , 1 , ) ( 1 , )
 

   
k k

sr srs k r k k r kx x K e
 (10) 

Mixed covariance prediction: 

 
( )

1( , 1 , ) [ ( , 1)] ( 1 , )    sr
ks k r k s k k r kP I K H P

 (11) 

State estimation:  
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Covariance estimation:  
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State estimation synthesis:  
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Covariance estimation synthesis:  
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Conditional probability density function of system 
structure state: 
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In the formula:  
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Calculation of initial conditions 

( ) ( ) ( )
0 0 0(0) ( ,0)  s s sse z H m   

( ) ( )
0 0( ,0) ( ,0) ( ,0) s s T

e s s sH H R   
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When the system structure jumps, the above described 
model is no longer linear but nonlinear. In order to achieve 
linearization, centering on ˆ( 1 , )k r kx , expanding the 

nonlinear model with Taylor series and omitting high-order 
components ,we can get 

 

ˆ (k 1 r,k)

(k 1) (s, (k 1)) (s,k 1)

ˆ(s, (k 1 r,k )) ( (k 1)

ˆ (k 1 r,k )) (s,k 1)

 

    


   


   

x x

z h x v

h
h x x

x
x v  (18) 

The difference between the target measured value and the 
predicted value in the spherical coordinate system is 

 
ˆ ( 1 , )

ˆ( 1) ( 1) ( 1 )

ˆ( ( 1) ( 1 , )) ( , 1)k r k

k k k k
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If let  

ˆ ( 1 , )( , 1) 


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 k r ks k x

h
H

x ,

ˆ( 1 ) ( 1) ( 1 , )k k k k r k    x x x , 

we can get  

 
( 1) ( , 1) ( 1 ) ( , 1)k s k k k s k     z H x v

 (20) 

Among them, the specific form of ( , 1)s kH  is shown in 
literature[1]. 

After Tyler expands, Equation (5) changes to 
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Change (17) to: 
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The calculation of the initial condition ( )
0

se  changes to  

 
( ) ( ) ( )
0 0 0(0) ( , )  s s sse z h m 

 (23) 

In the above analysis process, the effective switching 
between the two models is achieved by a nonlinear Gaussian 
Approximation filter algorithm. Using the calculated 
probability weights to synthesize the output of these models, 
the accuracy and convergence of the filtering estimation are 
improved. 

III. APPLICATION EXAMPLES OF ANTI-INTERFERENCE 

TRACKING ALGORITHM 

A. Building a Model 

In the following, the above filtering algorithm is applied to 
a system with a pointed interference signal in observation 
noise, and anti-interference tracking of the maneuvering target 
is achieved. 

Assuming that the target is moving in a plane with constant 
acceleration, the scan period of both sensors is T. Establishing 
a uniform acceleration model for a maneuvering target, then 
we can get the equation of motion as 

 
( 1) ( ) ( )  k k kx Φx Gw

 (24) 

( )kw  is a Gaussian random sequence with zero mean and 

variance Q . 1w , 2w  are independent and have the same 

variance 2


 . 

Therefore, 

2
Q I , 

that is [ ( )]  0E kw , T[ ( ) ( )]= kjE k jw w Q  The specific form of 

equation (24) has been discussed in the general study of 
maneuvering target tracking algorithms.  

Due to the mutual switching between the two sensors, tip 
interference must occur at the instant of switching. The 
observation equation in this case is: 
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 1 1 1( 1) ( ( 1)) ( , 1) ( 1, 2)      k k s k s Sz h x v  (25) 

In the formula, 

2 2

1 1
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x k y kR k
k k y kk
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z h x  

1( , 1)s kv  is white noise, 1 (2, 1)kv  is tip interference 
signal, The measurement of another sensor is not affected by it, 
and the measurement noise 2v  is Gaussian white noise with a 

mean of zero and a variance of 2 ( )R k . 

The initial conditions for system noise and observed noise 
and system state are 
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The transition probability of the structural state is 

 
( ) ( 1, ) ( , 1 , ) ( ) ( 1,2)    srq k k q s k r k q s s

 (26) 

Assume that the probability of a sharp interference signal 
in observed noise ( 2) 1  q s  

B. Simulation Analysis 

Take 4 2 6 2
1 (1, ) diag[0.36 10 (m) ,3 10 (rad) ]  kR ,

20msT , 0.05  , 

2 2
0 10000m 300m/s 4000m 150m/s 5m/s 4m/s   

Tsm
2 100


  6 2
2 ( ) 1 10 (rad) R k , 

4 2 6 2
1(2, ) diag[9.0 10 (m) ,7.5 10 (rad) ]  kR ,  

The probability of having and without interference at the 
initial time is 0.1 and 0.9 respectively. Its transition probability 
matrix is 
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, 400 600
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( , )
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, 400, 600

0.97 0.03
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     

k

q s r

k k

 

Figure I and Figure II compare random interference and 
non-interference in terms of the RMS estimation of the x -
direction position and the RMSE of the x -direction velocity, 
respectively. 

 
FIGURE I. X POSITION ESTIMATE RMSE 

 
FIGURE II. X DIRECTION SPEED ESTIMATION RMSE 

It can be seen from the above that after the interference 
exists, by using the mutual switching between the two sensors, 
a level equivalent to the RMSE of position estimation and 
velocity estimation in the absence of interference is achieved. 
It shows that the random jump theory can effectively suppress 
the interference and solve the unstable tracking problem 
caused by the mutual switching between two different sensors. 
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