
A Robust Predictive–Reactive Allocating Approach, Considering Random Design Change in

Complex Product Design Processes

Jiafu Su1, Meng Wei 2,3, Aijun Liu4*

1 Chongqing Key Laboratory of Electronic Commerce & Supply Chain System,

Chongqing Technology and Business University,

No. 19, Xuefu Avenue, Nan'an District

Chongqing, 400067, China

E-mail: jiafu.su@hotmail.com

2 College of Mechanical Engineering, Chongqing University

No.174 Shazhengjie, shangpingba District

Chongqing, 400030, China

E-mail: weimeng_cqu@163.com

3 Chongqing Bashu IVY School

No.51, North District Road, Yuzhong District

 Chongqing, 400013, China

4School of Economics & Management, Xidian University

266 Xinglong Section of Xifeng Road

Xi’an, Shaanxi 71012, China

Email: ajliu@xidian.edu.cn

Abstract

In the highly dynamic complex product design process, task allocations recovered by reactive allocating decisions
are usually subject to design changes. In this paper, a robust predictive–reactive allocating approach considering
possible disruption times is proposed, so that it can absorb the disruption in the executing process and utilize the
limited capacity of resource more effectively. Four indexes (Makespan, stability, robustness, and compression cost)
are used to measure the quality of the proposed method. To illustrate the novel allocating idea, we first assign tasks
to resources with the objective of a trade-off between the overall execution time and the overall design cost, which
can transform the problem into a non-identical parallel environment. Then, the probability distribution sequencing
(PDS) method combining with inserting idle time (IIT) is proposed to generate an original-predictive allocation. A
match-up time strategy is considered to match up with the initial allocation at some point in the future. The
relationship between the minimum match-up time and the compression cost is analyzed to find the optimal match-
up time. Our computational results show that the proposed sequencing method is better than the shortest processing
time (SPT) which is a common sequencing way mentioned in the literature. The robust predictive–reactive
allocating approach is sensitive to the design change, which is helpful to reduce the reallocating cost and keep the
robustness and stability.

Keywords: robust predictive–reactive allocating, design change, compressing execution time, match-up time

Received 10 October 2017

 Accepted 27 June 2018

1210

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

mailto:ajliu@xidian.edu.cn

1. Introduction

Complex products such as large technical systems are
inherently complex to design. Complex Product Design
(CPD) are developed through decomposition into a
series of sub-systems and components1, 2.
Macroscopically, decomposition creates many
interdependencies linking design tasks performed by
different designers from different domains which are
responsible for the synthesis of solutions for different
parts of the system. To guarantee the design process in a
controllable state without sufficient knowledge about
the imprecision caused by different kinds of design
change is the essential issue for the success of CPD.

The existing literature, on problems of task
allocating, mainly considers the environments with
static and deterministic versions3, 4. However, the actual
allocating problem of CPD in real life is dynamic and
uncertain2,4, since a design change occurs inevitably and
then disrupts the execution of CPD processes.
Numerous interdependencies in CPD imply that any
design change may trigger arbitrary design variables
which could affect or diffuse the degree of uncertainty
of the variables that it is connected to. Thus, managing
design change is important for decision-makers to carry
out a controllable CPD process.

Design change necessitates reallocating the
remaining tasks of the initial allocation plan. The high
efficiency and timeliness of task allocating are
particularly important. To the best of our knowledge,
most studies in the literature are based on the exact
values of the actual conditions. In a dynamic
environment, especially for CPD process, it is difficult
to guarantee the precise value of the task execution time,
the completion time, and the delivery5. On the other
hand, task allocating is flexible and learnable, that is,
the execution time is variable and controllable. The
controllability of the executing time provides flexibility
in reallocating against unexpected design changes by
compressing the executing time6. In addition, the
existing task allocation strategy concentrates on the
coordination efficiency when a design change occurs
but lacks the ability to anticipate design change. The
performance of reallocating strategies highly depends
on the allocation state at the time of disruption7. Under
the condition of incompletely accurate information, it is
of great practical significance to study the CPD task

allocation method which has the ability to predict
abnormal factors and processing real-time problems.

Predictive–reactive scheduling is a
scheduling/rescheduling process in which schedules are
revised in response to real-time events8. The predictive–
reactive scheduling strategies are mianly based on
simple allocation adjustments which consider only
efficiency9. The new schedule may deviate significantly
from the original schedule, which can seriously affect
other planning activities in the original schedule, and
may weaken their performance. Therefore, it is
desirable to generate the robust predictive–reactive
schedules, to minimize the effects of disruption on the
performance of planning activities. A typical solution to
generate a robust schedule is to reschedule by
simultaneously considering both efficiency and
deviation from the original schedule, that is, the stability.

Two kinds of major negative impacts on the original
allocations are accompanied by design change. First, it
degrades allocation performance. This effect is the topic
of robustness. Second, unforeseen design changes cause
variability. This effect is the topic of stability. A
schedule whose realization does not deviate from the
original schedule in the face of disruptions is called
stable.

To illustrate the robust predictive–reactive
allocating approach with the compressibility of
controllable execution time, a task-resource assignment
is obtained to transform this problem into a parallel non-
identical resources problem firstly. The objective of this
problem is to keep the trade-off of the overall execution
time and overall design cost. Then, the optimal
compression levels on the executing time of the task are
estimated to support the task sequencing on each Virtual
Design Unit (VDU, which is a specific definition
described in Section 3). In this paper, the probability
distribution of design change is considered to find the
executing sequence on each VDU (we combine the
advantages of inserting idle times and controllable
executing times). When design change occurs, a match-
up time strategy is applied to catch up with the original
allocation. In the considered reactive allocating problem,
the objective is to minimize the change-adaption cost
caused by disruptions, subjected to the condition that
the reallocation needs to match up with the original
allocation at the match-up time point after disruption10.
The performance comparison of the proposed approach

1211

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

and other common approaches in the existing literature
is discussed.

2. Literature Review

2.1 Task allocating approach

In the literature of allocating approaches, completely
reactive allocating, predictive–reactive allocating, and
robust pro-active allocating have been considered
extensively11-13. In those studies, the allocation is
usually restored within a slight adjustment to the control
the performance degradation. Yang et al.14 presented an
adaptive task scheduling strategy for heterogeneous
Spark cluster, which could analyze parameters from
surveillance to adjust the task allocation weights of
nodes.Aytug et al.15 gave an extensive literature survey
on allocating under uncertainty and generating robust
allocations. Fernandes et al.16 presented an imprecision
management method to support large organizations for
design process management. Salimi et al.17 improved
the NSGA-II using fuzzy operators to improve the
quality and performance of task scheduling in the
market-based grid environment. In their research, the
load balancing, Makespan and Price are regarded as the
three important objectives for the task scheduling
problem. Huang18 proposed a dynamic scheduling
method with the objective of the shortest project
implementing time in order to optimize the design task
scheduling and make adequate use of the resources in
concurrent engineering. AlEbrahim and Ahmad19
proposed a new list–scheduling algorithm that schedules
the tasks represented in the directed acyclic graphs, and
the new algorithm could minimize the total execution
time by taking into consideration the restriction of
crossover between processors. Vieira et al.20 presented
new analytical models that could predict the
performance of rescheduling strategies and quantify the
trade-offs between different performance measures. In
order to obtain the task scheduling scheme on
heterogeneous computing systems, Xu et al.21 developed
a multiple priority queues genetic algorithm, which
combines the advantages of both evolutionary-based
and heuristic-based algorithms. Based on the above
review, the existing studies in the literature mainly
assume fixed executing times. In this paper, we consider
anticipative allocating with controllable executing times
which have been discussed rarely to the best of our
knowledge.

2.2 Compressing Execution Time

Design change such as customer’s requirements change,
temporary change of design content, technological
innovation could deteriorate the stability and efficiency
of the design process and make an unpredictable impact
on the quality of complex products22, 23. Inserting idle
times in the original allocating plan is a well-known
predictive allocating approach to minimize the effects of
possible disruptions on an allocation so that disruptions
can be absorbed by the time buffers13, 24. Colin and
Quinino25 addressed a problem of optimally inserting
idle time into a single-machine schedule and proposed a
pseudo-polynomial time algorithm to find a solution
within some tolerance of optimality in the solution
space. Yang and Geunes26 considered a predictive
schedule where a firm must compete with other firms to
win future jobs, and they proposed a simple algorithm to
minimize the sum of the expected tardiness cost,
schedule disruption cost, and wasted idle time cost. Wei
et al.13 proposed a controlling executing time strategy in
product design process, where the executing time can be
controlled by inserting idle time. Shabtay and Zofi27
studied the single machine scheduling problem where
job processing times were controllable, and developed a
constant factor approximation algorithm to find the job
schedule that minimizes the makespan. Wang and
zhao28 considered the due date assignment and single-
machine scheduling problems with learning effect and
controllable processing times, which depended on its
position in a sequence and related resource consumption.
Wang et al.29 considered the single machine scheduling
problems with controllable processing time, truncated
job-dependent learning and deterioration effects. Renna
and Mancusi30 developed a multi-domain simulation
environment considering the management of job-shop
manufacturing systems with machines characterised by
controllable process times.

In any idle time insertion approach, when execution
time is fixed, inserting idle time is an effective way to
deal with dynamic uncertain allocating. If no design
change occurs or if it occurs after the inserted idle times,
then the time buffers could be insignificant and increase
the extra idle time costs. Studies in the literature assume
an immutable execution time. However, the executing
time of the design task is self-adaptive and more
flexible than the problem in job shop scheduling. We
can shorten the executing time by design innovation and
efficient cooperation. This feature determines that the

1212

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

http://xueshu.baidu.com/s?wd=author%3A%28Moshe%20Zofi%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Moshe%20Zofi%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

execution time of the design task is variable and
controllable. Analogously, inspired by inserting idle
times, we propose that we can use times to absorb the
influences caused by design change. it is critical to find
the positions of the jobs in the initial schedule in an
appropriate order so that a possible disruption is
absorbed immediately and with a reasonable resource
cost increase. The executing time is compressed,
whereas the compression cost is increased due to the
increased consumption cost of the resources. Therefore,
the probability distribution sequencing (PDS) method
combining with inserting idle time (IIT) is proposed to
generate the original predictive allocation, and CETS is
used to react to disruptions by resetting the executing
time. Consequently, the limited capacity of design
resources can be utilized more effectively.

2.3 Contribution

The actual performance of allocating settings often
differs from the planned because of the design change.
The deviations in the execution time and other uncertain
events always lead the allocations to inaccuracy or
infeasibility26, 31, 32. They negatively increase the
variability in the system, which deteriorates the
allocating performance in turn, and eventually, the
design change upsets the system performance or lead to
infeasibility. In CPD processes, it is difficult to avoid
the disturbance of design change. The existing literature,
in response to real-time events, mainly consider single
objectives such as efficiency33, 34 or time31, 35 but ignore
the balance and the robustness of the whole system.

Controllers need to optimize their process of how to
execute all the design tasks and react to all the
disruptions due to design change. It is imperative to
form an anticipative initial allocation that guarantees the
efficiency of allocation to react to the real-time design
change. The existing literature always assume that the
task-resource assignment is known, the executing time
is fixed, or the sequence is determinant36-38. This can
simplify the real-time problem but the capacity of
design resources will be under-utilized. To the best of
our knowledge, generating a flexible allocation
completely, with a controllable execution time and
determining the executing sequences with the design
change consideration has not been studied well in the
literature.

In this paper, we attempt to employ an anticipative
allocation with controllable executing time. Two steps

are involved in our anticipative approach. The first step
is to assign tasks to limited resources with the objective
of cost and time with the heuristic algorithm. The
second step is to determine the executing sequence on
each VDU by considering the flexibility measures and
the disruption probability function.

3. Problem Statement

In order to absorb the disturbance caused by the
uncertain design change, we develop a robust
predictive–reactive task allocating approach to form the
task assignment. We first introduce an allocation model
to assign tasks to limited resources over time according
to some constraints. Then, we need to find the sub-task
sequence on each VDU by determining the compressing
levels of tasks and considering the probability
distributions of design change. Finally, when design
change occurs, we use a match-up time strategy to keep
the trade-off between the design cost and match-up time.

In this paper, each design task can be decomposed
into a different number of sub-tasks. The required
granularity of the design resource is related to the
division granularity of the design task. When some
similar design tasks are accepted in the design platform,
the platform chooses the candidate executors from the
design resource pool. Accordingly, the task cannot be
completed with unitary resources. To realize the
efficient use of design resources, a Virtual Design Unit
(VDU)39, 40 is taken as the basic task executing unit.
VDU is an effective integration of the design resource
monomer, such as a designer, computing device,
software/hardware, tool, and design knowledge model,
which cannot complete a certain design task
individually. According to the design task requirement,
VDUs are dynamically generated by organizing
different design resources. Design tasks are assigned
with short time, low cost, and equilibrium load, and
designers in VDU are the executing subject. VDUs are
connected by the design task sequence executed in the
design process.

A general definition of allocating problems with
controllable task executing times is stated as follows: A
design process contains m VDUs, presented by the set

of  1 2 mU ,U ,...,U , and the product design is

decomposed into n tasks  1 2 nT ,T , ...,T after analysis.
The ultimate goal of task allocation is to assign design
tasks to VDUs optimally according to a certain design
sequence in order to determine the starting time,

1213

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

completion time, and to ensure that it can be completed
in the delivery period. When the design change occurs,
it seeks responses quickly and effectively to ensure the
trade-off between the original target and reallocated
objectives.

The basic definitions and descriptions are shown
below.

Definition 1. The design tasks can be decomposed
into a series of determined design sequences. Let

ij i{T , j 1,2, ..., N} denote the design sequences,
iN denotes the total number of sequences in each

design task. ijT U denotes the set of VDU which can
execute the sequences ijT , that is, the design sequences

ijT can be completed by any VDU in ijT U .

Definition 2.

 ijk ij

ijk

X = 1, T is executed by VDU k
X = 0, others

ijpqk ij pq

ij

ijpqk

Y = 1, T and T is executed by VDU k,
and T has the priority

Y = 0, others





ijkX is the condition of discrimination that the
design sequences ijT is executed by the VDU k . ijpqkY
is the priority condition of discrimination that the design
sequences ijT and pqT is executed by the VDU k .

The quality of the solution is measured by four
criteria: the first one, 1F (Cmax), is an allocating
criterion dependent on the task completion times. Cmax

is considered in the task assignment, but not considered
in the sequencing phase. The second one, 2F , is the
design cost, which is a fixed cost, f

ijC , determined by
the length of the executing time, plus the compression
cost c

ijC , which is incurred if the executing time is
compressed, determined by the amount of the
compression time. Unforeseen disruptions cause
variability, any deviation can disrupt these activities and
increase the system nervousness. Thus, in robust
predictive–reactive allocating approaches, we develop
the third one, 3F (Stability), which is the sum of the
deviation of the starting time from the original schedule.

4F is the Robustness measured by the minimum match-
up time.

We divide the allocating problem into two stages.
The first one is task assignments. The second one is
sequencing and inserting. There are two steps in the first
stage of task assignments. Step one is task
decomposition and classification. In this phase, the
product design tasks or part design tasks are divided
into orderly subtasks sets. Step two is the VDU

discovery and VDU task assignment. VDU discovery
provides a list of available VDUs and VDU task
allocation involves the selection of feasible VDUs and
the mapping of tasks to the VDUs. Similarly, there are
two steps in the second stage. The first one is to
determine a good design sequence for tasks on each
VDU. The second one is to determine where to place
the idle time and the amount of time for each arrival
task.

3.1 Initial VDU-Task Allocation

3.1.1 Classification of Design Change

The design resource and design task are the most basic
elements in CPD. The adjustment and conversion of the
executing state of the design task and resource is the
main reason leading to reallocation. In this paper, we
classify design change into two categories: resource-
related and task-related design changes41. Specifically,
resource-related changes mainly contain the resource
joint, resource withdrawal, unavailability, designer
absence, tool failures, delay in the arrival or shortage of
materials, resource capacity decrease, and so forth.
Task-related changes conclude the task joint, task
cancellation, due date changes, task adjustment, early or
late arrival of tasks, rush tasks, changes in task priority
or processing time, and so forth.

As the predictive schedule is executed, it becomes
subject to alterations due to the status of uncertain
design change. In this paper, we mainly follow with
typical types in design change. We call the resource-
related changes as Type 1 design changes. Alternatively,
we refer to task-related changes as a Type 2 design
changes. In Type 1 design changes, resource
unavailability is frequently discussed in the existing
literature. It is manifested as an unavailability at some
point, before recovering after a period of repair. In Type
2 design changes, we mainly consider the new task
arrivals. When an uncertain task arrives at some point,
the reactions to this disruption should be applied
immediately to obtain the executing time for the new
task.

3.1.2 Original VDU-Task Assignment

If the supervisor associated with the task chooses the
VDU to execute the task, we say that the VDU “wins”
the task. If the VDU is unavailable at some point, we

1214

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

say that the VDU “loses” the task. We assume that no
task preemption is allowed. The original objective of
this problem is to achieve a set of tasks to be allocated
on parallel non-identical VDUs.

As for similar tasks allocation in CPD process, the
problem of assigning design tasks to VDUs in such a
way as to maximize the overall performance is a
challenging one. In this section, we solve a parallel
VDU-task allocation problem to minimize 1F and 2F .
In a parallel VDU environment, each task must be
processed by any one of the m VDUs, where each
VDU has a different designing ability for each task.

In this paper, we assume the resource is non-
renewable and its availability has an upper bound

uD (a
given parameter). In CPD processes, we can control the
executing time by increasing the resource consumption,
such as additional money and overtime. A mathematical
formulation of the problem is as follows:

 1 max max ,
j

j T
j

j T

e
F C e

m





  
   

  

 (1)

   2

1 1

n m
f

ij ij ijij

j i

F C x f y
 

  (2)

 
1

. .
n

ij ij ij i

j

s t e x y D



  (i)

 , 1,..., , 1,...,u

ij
ij ij ij j nl iy x y m  

1

1, 1, ...,ij

m

i

x j n


 

  0,1 , , 1,..., , 1,...,ij ijx y j n i m    

 3

1 1
ij

n m
r

ij

j i

F stability s s
 

   (3)

 4 min MUTPF robustness  (4)
 1 2min (1)Ff F    (5)

The executing times of a task on a VDU can be
compressed by a consumption cost of the resources with
non-linear growth, that is, the change-adaptation cost,

c

ijC . The change-adaptation cost function for task j on

the VDU is  ij ijf y , which is decided by the amount of
compression ijy . ijy contains the optimal

compressibility *

ijy and the secondary compressibility
2

ijy . u

ijy is the upper bound of the amount of
compression. On each VDU, there is a given available
VDU time capacity iD . ijl is a specified limit 0ijl  . A
weight  is associated with the two objectives. If 1  ,
we choose the assignment with the minimum time. If

0  , we choose the VDU-task assignment which has

the minimum design cost. In this paper, we try to
minimize 2F subject to 1F K , where K is a given
upper bound.

In this paper, we assume that the capacity on each
VDU is initially the available time

iD , where
i uD D .

Then, the objective function can be regarded as a
mixed-integer nonlinear programming problem. In this
section, the compression of executing times is not
allowed, 0ijy  . Thus, the VDU-task assignment
problem is reduced to the classical generalized problem.
Currently, such problems have been well solved by
using heuristic algorithms. To solve this problem, we
use a genetic algorithm for the VDU-task assignment
problem.

3.2 Predictive Allocating

Design change has been classified into resource-related
and task-related. It is uncertain which VDU will fail, at
what time, and how long it will take to repair an
unavailable VDU. Tasks arrive at the system
dynamically over time. We assume that the probability
distributions times are known. After analysis of the
related literature, we selected the distribution which
presented a good performance. The distribution of the
task arrivals process closely follows a Poisson
distribution. Hence, the time between task arrivals
closely follows an Exponential distribution and the time
between the two VDU unavailability and the recovery
time are assumed to follow an Exponential distribution26.
Task arrivals require resource occupation to place the
new tasks. Consequently, the original unfinished task
will be compressed to make enough space for task
arrivals.

3.2.1 Original VDU-Task Assignment

Step1: Priority measure
We provide a set of priority measures to be

evaluated for each task. We will use the flexibility
measures in deciding which tasks are appropriate to
schedule at risky time zones. When determining the
optimal initial compression amount *

ijky for task j , it is
not considered for the sum of the fixed machining costs
of all the tasks

1

n

j

f

ijC
 because it is fixed constant. In

this paper, we assume that the compression cost, that is,
the c

ijC of each task, can be expressed as a

function  ij ijf y of 0y  as follows:

    

1

min min ij ij

n
a

ij ijij

j

b
hyf y



 (6)

1215

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

where 0a b  and 0h  . By solving the convex
programming Equation (6), the optimal initial
compression amount *

ijky of task j is obtained.
When there is a Type 1 design change, it is crucial

to restoring the normal operation of the system as soon
as possible. Further compression of some of the
compressible tasks is needed for absorbing the duration
of the interference event and the time at which the task
has been processed while the interference is occurring.

Due to the function  f y being convex, the cost
of compressing a period of time through multiple design
sequences is significantly lower than a single design
sequence compressing the same period of time and it is
consistent with the actual situation. However, if the
optimal compression amount of the interference interval
has been overdrawn and still cannot match the original
scheme, we need to adopt the second compression to
further compress for some compressible tasks. It is
necessary to determine the order of compression based
on the relationship between the secondary compression
amount and the increasing cost. That means, when the
change occurs, we should consider how to define the
sequence of the task that is waiting to be compressed.

The absorption capacity is mainly reflected in the
compression time. The increasing of the compression
cost is the secondary consideration of the target. In the
existing literature, the factors that affect the influence of
tasks absorption interference are the remaining
compressible amount

ijv of task j ; the executing time

ije ; the second derivative  " *

ijf y of the change
adaptation cost function in the optimal point of
compression *

ijy , and the average slope of change-
adaptation cost function  .

jr is the direct reflection of
the ability to absorb interference effects of task j . It
cannot absorb the interference effect anymore if 0ijv  .

However, ije ,  " *

ijf y , and  reflect the absorption
capacity of task j from the perspective of the changes
in the compression costs. If *

ij ijy < u , the first derivative

of the change-adaptation cost is equal at *

ij ijy = y for the
different task j . Therefore, we use the second

derivative  " *

ijf y of the change adaptation cost

function in the optimal point of compression *

ijy to
measure its cost rate of change.
   2" * *

ij ijf y f y   (7)

 ij ij ijv u y  (8)

   *

ij ij

*

ij ij

f u - f y
=

u - y
 (9)

From the above analysis, it is obvious that the
effect of

jr on the absorption interference of the task is
positive (the greater the value is, the stronger the
capacity of the absorbing interference effects). ije ,

 " *

ijf y , and  are negative on the effect of
interference absorption (the greater the value is, the
weaker the ability to absorb the impact). With the
consideration of four factors, in this paper, we design
compound sequencing rules to determine the priority of
task j , which can be formulated as

 

2 3 4
1ij ij " *

ij ij

O = * v
e f y

  
   


 (10)

. . 0,k 1,...,4ks t   
This study assigns a higher priority to tasks with

weaker ability. Thus, for any task j , the smaller the
value of

ijO is, the higher priority it has. When 0jr  ,
the task cannot absorb any interference events at this
moment so that the priority is the highest for this task.

Step2: Probability distribution sequencing
Let iX be the random variable defining the losing

time of VDU i , and iY be the random variable defining
the recovery time after this design change occurs. After
giving the losing time and recovery time distributions
for VDU i , we can calculate the probability  dP t that
it will be unavailable at a certain time t in the available
time  0, iD of VDU i .

      , 0,d i i i iP t P X t X Y t D     (11)
We consider that the probability density function

of iX as a unimodal function on  0, iD , similar to the

research of Gurel et al10. Then,  dP t is unimodal on

 0, iD .  dP t can obtain the maximum value at a

certain point within interval  0, iD , and the minimum in
the interval boundary. This section will utilize this
attribution to determine the sequence of the tasks j on
VDU i .

Let xf , xF , yf , and yF be probability density
functions and distribution functions of continuous
random variables iX and iY , respectively.

1216

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

   

    

      

0

0

 1 X

Y

d i i i

y

x x

P t P X t X Y

F ft x

F t F t

x dx

y yy f d





   

   

  





     

   

    

0

0

0

1

Xi i i i i i i

i X

y X

P X t X Y P X t X Y X x

P

f x dx

f x dx

f x d

Y t x

F xt x











        

  

  







Similarly, conditioning on y immediately brings
up the second y equality.

After determining the priority of the tasks and the
probability that the VDU lose the task for a moment on
the interval  0, iD , we design a probabilistic
sequencing algorithm to place the tasks. First, we
choose the task *j with the highest priority to place at
the boundary. This step places the task with the worst
capacity of absorbing interferences to the period with
the lowest probability of losing the task. Similar to this
sequencing rule, we place the tasks with the minimum
priority to the positions with the maximum probability
of unavailability. When we evaluate two alternatives,
the left boundary and right boundary, we need to check

the *

2
j

dP
e 

 
 

 and *

2
j

d iP D
e 

 
 

, which correspond to

the left boundary and right boundary, respectively. If
* *

2 2
j j

d d iP P D
e e   

    
   

, we place the task *j at the

left boundary, else, at the right boundary. Then, the
probabilistic sequencing algorithm updates the
remaining available interval and selects the highest
priority from the remaining parts of the tasks to place at
the right boundary. The algorithm repeats the operation
until the initial executing allocation is obtained.

3.2.2 Original VDU-task assignment

We first generate a predictive schedule with uncertain
task arrivals, which includes an amount of planned idle
time equal to or less than the executing time of the risky
task.

For the Type 2 design change, let
 1 2, ,..., kUT UT UT UT be the set of uncertain

tasks, ^ 1,2,...,kj  . We assume that each task ^j has
an associated release date ^jr , which is the earliest time

at which the task can begin executing. Similarly, each
task is resolved at time ^jt , therefore, there is such a
relationship ^ ^j jt r . Each VDU has a given iD and an
upper capacity uiD . After generating the task sequence
on each VDU i , let aiT be the total tasks on each VDU

i .
1

m

ai

i

T T


 . We can calculate the total executing time

j

1

,T
n

i ij ai

j

E e T


  on each VDU i . Therefore, there is a

total of iR units of remaining time, given by the
formula i i i ui iD E R D E    .

For the sake of brevity, we only explicitly discuss
the limited uncertain arrival tasks. We assume that there
are arrivals tasks ik on each VDU i . It must satisfy

^
^ 1 1

k m

j i

j i

Re
 

  and ^

^ 1

ik

j i

j

Re




For each arrival task, the VDU has a probability
^j to win the task. The goal is to determine the

optimal idle time length  and the insertion position  .
For each uncertain task, we allocate ^j units of
executing time, where ^ ^0 j je  .

Our first goal is to generate a predictive allocation
based on the sequence determined in Section 3.2.1.
Then, we insert  units of idle time for the risky task

^j at some point in the schedule (both the amount of
planned idle time and the insertion position are decision
variables), where  is an integer. If the task ^j is
inserted in position k in the allocation plan, we denote
the resulting allocation as  ,pA k .

A branch-and-bound algorithm can find an optimal
solution to the overall problem. Therefore, in this paper,
we utilize a branch-and-bound algorithm to determine
the optimal amount of planned idle time for each arrival
task when the sequence is predetermined. While such
branch-and-bound approaches are exponential in the
worst case, the average-case performance often allows
solving medium size problems in acceptable computing
time33. The remainder of this section focuses on
determining the optimal amount of planned idle time for
a predetermined sequence of jobs.

Given a predetermined sequence of tasks, without
loss of generality, we denote the thq task on VDU i in
the sequence as task  _q i . In the dynamic

programming recursion, at any stage j , let  jz t
denote the expected cost of the sequence of tasks
   1_ ,..., _i q i when task  _q i has an expected

1217

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

completion time equal to t . We define  0 0z t  and
0 t   as a set of boundary conditions where t is a
state variable. By definition, for the fixed sequence of
jobs, the optimal amount of idle time for each job is
obtained by taking  0mint nz t

. We create the
predictive allocation with

 _q i
 units of executing time

for task  _q i , where
 _q i
 is a decision variable. In

stage j , we already have the schedule for tasks

   1_ ,..., _ 1i q i  and now consider task  _q i . Let 't

denote the expected finishing time of task  _ 1q i  .

The goal is to determine the location of the
insertion and the time of insertion. It should be noted
that we assume that the upper bound of the VDU i is
that all the execution times on a VDU in the stage of
sequence determination. In this section, the upper bound
has changed into uiD which equals to ui i iD R E  as a
given value. Namely, there is no need to control the
predetermined value of uiD to limit the insertion time.
However, it is critical to moving the existing task left or
right to place the idle time. In this paper, we assume the
distribution function is a convex function. Accordingly,
if the arrival position k is on the left side of the
maximum probability task position, we move the tasks
to the left of k to the left. Similarly, if the arrival
position k is on the right side of the maximum
probability task position, we move the tasks to the right
of k to the right.

3.3 Reactive Allocating

We consider two possible reactions to design change.
Reaction A: Compressing Execution Times Strategy

(CETS); Reaction B: Absorbing by idle time. For type 1,
the behavior of reaction A determines the sequence and,
in turn, we utilize the special sequence to absorb the
impact by compressing the executing times of task j .
For type 2, the behavior of reaction B determines the
position and time of its insertion. If the idle time cannot
absorb all the disruptions, the neighboring task is used
to deal with the remaining executing time. Most of the
literature considers the RSH and Compression methods.
In this paper, we consider the controllable executing
times, and thus, the utilization of compressibility of
RSH is too low. Therefore, we chose the Compression
method to react to the Type 2 design change. Therefore,
in order to reduce the impact of interference, the CETS

is used to react to both Type 1 and Type 2 design
changes.

3.3.1 Reactive Allocating for Type 1 Design

Change

The goal is to achieve the trade-off between robustness
and compression cost (the fixed cost is determined by
the executing time, the final executing time is definitely
less than the Cmax on each VDU, therefore, we think
that there is no change in the part of the fixed cost).

We introduce alternative match-up scheduling
problems for finding schedules on the efficient frontier
of this time/cost tradeoff. The execution time of a
design task can be compressed by a non-linear
consumption cost of the resources. In rescheduling with
controllable executing times, catching up an initial
schedule earlier is possible by extensively compressing
the tasks that are scheduled just after the disruption.
With convex compression costs, absorbing a downtime
by compressing a smaller set of tasks in the schedule
results in higher compression costs. Hence, there is a
trade-off between the match-up time and the cost of the
new schedule.

In order to respond to the design change, we need
to judge whether the reallocation point is triggered and
which strategy to use. When it responds to change, if we
use the CETS, we need to calculate the extent of the
damage and work out the scope of influence
simultaneously, then we need to select the affected task
set and compress the executing time to make the scheme
run in accordance with the initial one as soon as
possible. Due to the fact that the parameter value
   i 1 2 3 4= , , ,     has a greater impact on the
reallocation, the inappropriate selection of parameter
values may result in a larger compression cost and a
larger match-up time point. Therefore, the core problem
in this section is to choose the appropriate value  i to
reduce the compression cost and ensure stability.
Therefore, once a design change occurs, the allocation
system can be restored as soon as possible and execute
in the light of the original allocation. Let

minM be the
minimum match-up time point for the new allocation
and the original allocation after the design change event
occurs during the execution of the original allocation
and continues for a period of time. Since it is almost
impossible to establish the analytical relationship
between

minM and  i , the optimal parameters cannot
be obtained by the classical mathematical optimization
theory. In order to solve this problem, a universal
approach is needed to solve this uncertain structural
problem. The genetic algorithm (GA) as a kind of
intelligent optimization method has been successfully
applied in industrial engineering, artificial intelligence,

1218

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

automatic control, and other fields because of its
inherent parallelism, strong searchability and the
universality of different structural problems42. Here we
design the basic genetic algorithm (GA) to solve the
problem.

The basic elements of the genetic algorithms are
coding, individual evaluation, and genetic operation.
They are described as below:

1) Coding
We take a nonnegative real number encoded by

using a 4-dimensional nonnegative real vector as the
individual of the population directly. For the initial
population, a 4-dimensional nonnegative real vector of
the specified scale is randomly generated.

2) Individual evaluation
For any individual in the evolutionary process, the

fitness function can be calculated by estimating the
compression cost at the minimum matching time point
based on the probability of design change. Accordingly,
the individual evaluation can be performed. Due to the
uncertainty of the real production design process, it is
not possible to accurately predict the time of occurrence
and the duration of the design change in the original
plan. The exact information can only be known after the
incident has occurred and ended.

Therefore, similar to the current approach of the
design change occurring at the probability in existing
literature research, in this paper, the expectation of
random variables iX and iY is used to estimate the time
of occurrence and the duration of the design change.

The specific calculation method of individual
fitness values is described as follows.

Given a set of parameter values
   i 1 2 3 4= , , ,     (an individual), we can
determine the original plan following the steps above.

First, we determine the compression task zone of
the minimum number of tasks arranged after the
occurrence of the design change for the estimated time
point and duration of the design change. Then, by
compressing the executing times, it can absorb the
approximate duration of the design change and the time
that the task has been processed when the interference
occurs.

Let minL be the completion time of the last task in
the task compression zone, the compression cost *F at
time minL can be calculated by Formula (12).

  a b

c ijkminC = C = hy  (12)

  
ij

ijk ijk min 1 2

T AT

s.t. E - y = L -W -W




 (ii)

 ijk ijk ijk ij0 y u E T AT   ，
where AT is the compressed task zone,

1W is the
completing time of the last task before the change
occurs,

2W is the affected time of the change
disturbance, which equals the sum of the approximate
duration and the time that the task has been processed
when the interference occurs. After calculating the value
of

minL and *F , the two-dimensional vector  *
minL , F

constitutes the two-dimensional space. We select the
Positive Ideal Solution (PIS) and the Negative Ideal
Solution (NIS) from the two-dimensional space.

PISd
and

NISd denote the Euclidean Distance of PIS and NIS

to  *
minL , F . Thus, the fitness value of the giving

parameter  1 2 3 4, , ,    can be calculated by

PIS NISd / d . PIS and NIS have their own selection
principle respectively.

The choice of PIS should make the match-up time
and compression costs as small as possible, such as
 0,0 . On the contrary, the choice of NIS should make
them as large as possible.

3) Genetic operation
In GA, the common operations mainly conclude

the selecting operation, the crossing operation, and the
mutating operation. It can keep the population update
and ensure the excellent characteristics of the previous
generation. The selecting operation of this study is
based on the stochastic uniform function, the Scattered
cross used by the crossing operation, and the mutating
operation based on a Gaussian function. Since the
genetic operation is not the focus of this paper, the
details are not explained here.

In the evolution process of the GA, if the
termination condition is satisfied, the output the optimal
parameter value    * * * * *

i 1 2 3 4= , , ,     in order to
develop an original executing timetable. In addition, in
order to explore the trade-off relationship between the
match-up time and the compression cost (the
compression cost will decrease correspondingly with the
match-up time), the following operations are performed.

For Formula (12), let minL equal the completion
time of the first task after the compressed task zone.
Then, the first task is incorporated into the compressed
task zone to recalculate the compression cost at this
moment. This means that we can compress more tasks
to absorb the interference of the design change in order
to analyze the change of the compression cost at this
time. Repeat this operation until the match-up time
point is equal to the length of the original executing

1219

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

timetable. Finally, we store the match-up time points
and the corresponding compression costs at this moment.
The specific process is shown in Figure 1. Eventually, it
outputs a series of  *

minL , F to reveal the relationship
between the match-up time and the compression cost.

Perform the genetic operators, update the
population

Increase Lmin and update the compressed
task set. Recording the new (Lmin, F*)

Terminate algorithm, calculate α*

Calculate the task priority based on {α*},
develop the original timetable and Lmin

Calculate yij
*

Generate the Non-negative parameters {αi}
randomly, initialize population

Calculate the priority of task and develop
the original executing timetable.

Select the PIS and NIS，
Individual evaluation by min:dPIS/dNIS

Meet the convergence criteria

Lmin=D

Output all the recordings of (Lmin, F*)

YN

Y

N

Figure 1. A flowchart of the solution procedure.

3.3.2 Reactive Allocating for Type 2 Design

Change

In this paper, we consider the complete compression for
one arrival task which means that all the compression is
applied to the arrival task only. If an uncertain task
arrives at VDU i , we use some (possibly extraordinary)
mechanism (such as overtime) to get the allocation back
on track by reducing the task executing times at an
additional cost of ^jc per unit of executing time
reduction for task ^j . The compression costs in this
condition is a linear function of compression time

^ ^j je  . In such cases, ^ ^
l

j je  , where ^
l

je is the
lower bound on the minimum possible executing time of
task ^j . Hence, the expected completion time of task

^j equals
    ^ ^',max

j j
t rt  . The expected

finishing time is again determined by 't and  , where
we will have either

   _ _' t
q i q i

t r   with

   _ _q i q i
t r   , or  _'

q i
t r with    _ _q i q i

t r   .

Expressing the expected cost  _q iz t as a function

of    _ 1q i
z t


, we have that  _q iz t equals    _ 1q i

z t


added to the expected compression cost, and the unused
idle time cost of the task ^j , which we express using
the function

           

      

_ _ 1_ _ _

_ _ _

', ' 1
q i

compress

Iq iq i q i q i

q i q i q i

z t z t c

e c

  




  

 
（13）

Ic is the unused idle time cost per unit time,
 _q i

c

is the compression cost of the task per unit time. The
function

  _ _',
q i

compress

q i
z t  provides the expected cost of

allocating
 _q i
 units of the time for task

 _q i immediately after task  _ 1q i    , when task

 _ 1q i    has an expected finish time of 't and

compression is used. Given 't and
 _q i

r , the expected

finish time for task  _q i of
    _i _',max
q q i

t rt  is

implied. We thus evaluate
  _ _',

q i

compress

q i
z t  for all pairs

't and
 _q i
 such that

    _i _',max
q q i

t rt  .

Based on our prior construction and discussion,
 _q iz t provides the minimum cost of the scheduling

job task  _q i with an expected finish time of t . Note

that the value of  _q iz t for some  _q i and t
combination may be infinite, which implies that no
feasible schedule exists for job  _q i finishing at time
t . The optimal value of the objective function for the
fixed sequence is then given by

  _ _min : 0 u

q i q iZ z t t e   , where _
u

q ie is some
upper bound on the required time for executing all
possible tasks.

We next characterize the complexity of the
dynamic programming approach. Let max denote the
largest executing time compression possible among all
tasks. In the recursive equation of compression cost, if

 _'
q i

t r , then for each t , there are  maxO  possible

values of
 _q i
 , and one value of 't for each  _q i .

Therefore,    _ 1 '
q i

z t


 is determined for each
 _q i
 ; if

 _'
q i

t r , then for each t , there is one value of
 _q i
 ,

and we select the 't that gives the lowest value of

   _ 1 '
q i

z t


. Given a  _ ,q i t pair (a state), we require

 maxO  operations to compute Formula (13). In each

stage (task) there are  maxO  states. Selecting the

lowest value of    _ 1 '
q i

z t


 requires  maxO  operations
for each stage. Therefore, we need

    2
max max_ _O q i q i  operations in each stage.

There are  _O q i stages, thus the complexity of the

dynamic programming approach is   2 2
max_O q i  .

1220

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

In this section, we consider the Compression to
absorb the disruptions, as we show next. This problem
is equivalent to a deterministic scheduling problem with
controllable processing times.

We assume that all the time variables and
parameters are integral multiples of a proper unit of l.
As before, our predictive policy schedules

 _q i
 units of

planned idle time, where ^ ^ ^
l

j j jee   . If a task is
awarded, we place the task in the planned time window
by reducing (or compressing) the processing time from

^je to ^j . As a result, a compression cost of

 ^ ^ ^j j je c is incurred for expediting the task.
Given a predictive schedule, the expected cost and

the objective function will be as follows:

         

    

_ ^_ _ _ _
_i _i

_ _
_

',

1

q i

compress

jq i q i q i q i
q q

Iq i q i
q i

z t e c

c

  

 

 

 

 


 (14)

^j is the probability that the VDU i will win the
new task. In Formula (14), the first term represents the
expected tardiness cost, the second term is the expected
compression cost, and the third term is the expected
unused idle time cost. Defining _ ^ ^q i j je   and

 ^ ^ ^' j j I j Ic c c c   , the Formula (14) can be
rewritten as

     

   

 

_ _ ^ ^ ^ _ ^_
_i _i _

_ ^ ^ ^ ^
_i _

_ ^ ^ ^
_i _

', 1

1

' 1

q i

compress

q i j j j q i j Iq i
q q q i

q i j I j I j j I

q q i

q i j j j I

q q i

z t c e c

c c c e c

c e c

    

  

 

   

     
 

  

  

 

 

 Note that the  ^ ^
_

1j j I

q i

e c term is constant.

We can thus, reformulate the objective function as
_ ^

_i
'q i j

q

c . If ^' 0jc  , the optimal decision variable

values are ^ ^
l

j je  and _ ^ ^
l

q i j je e   . If ^' 0jc  ,

^' jc is equivalent to a compression cost, _q i is
equivalent to the compression time of task ^j . The
resulting problem becomes equivalent to a deterministic
scheduling problem that minimizes the weighted
tardiness costs with the controllable process times. For a
fixed sequence, this problem can be solved by an
compress and relax algorithm proposed by Yang and
Geunes26.

4. Computational Study

4.1 Reactive Allocating

In this paper, we use the random numerical test to verify
the effectiveness of this method. In task assignment
problem fields, we use the conventional method to solve
this problem. Specific design task attributes, design
capability attributes of VDU, task classification criteria,
and other information are described in the research of
Cao et al.43. The literature has considered the sorting
problem in the case of VDUs that are not available at
some point. Some scholars have taken the stochastic
arrival of tasks into account and asked for emergency
processing.

The problem has been proved to be an NP-hard

problem and the SPT rule can minimize the expected
time when the VDU unavailability is the exponential
distribution. Therefore, the use of SPT to form the initial
executing timetable is a better way to deal with the
possible interference events. In this part, we assume that
the losing time iX of VDU i and the recovery time iY
are subject to the exponential distribution of the
different parameters respectively. In the following, PDS
stands for our proposed probability distribution

sequencing, so that SPT stands for the shortest

processing time method. A comparative analysis of the
original allocating timetable of PDS and SPT is
performed in this section.

We let the size be 100n  , 5m  and 200n  ,
6m  , respectively. For the practicality of the

verification method for the general situation, the
residual parameters are randomly generated from a
uniform distribution. We generated the design cost for
each task-VDU pair randomly from Uniform  2.0,6.0 .
For the compression function, the coefficient h is
randomly generated from the interval  1.0,3.0 ; ij ija b

is randomly generated from the interval  1.1,3.1 . For

the executing time, u

ije is randomly generated from the

interval  1.0,5.0 . In practice, there is a certain
relationship between the compressible upper bound and
the executing time, so that  0.5,0.9u u

ij ijy e  . iD is set
to equal to the multiplied sum of the executing times of
all the tasks after the testing of u

ije to avoid extreme
cases when the available VDU capacity is too small. For
the losing time iX , let iX obey the exponential
distribution of the parameter  1 0.3 iD . For the
recovery time iY , considering the effect of the
interference event on the results at different times. Let
the exponential parameter be  1 iD  , where  y is

1221

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

equal to 0.10 , 0.12 , 0.13 , and 0.15 , respectively. So
that the expression of  dP t this time is

     

1 1
0.3

t t
Di Di

dP t e e
 

  ,  0, it D 11.

For PIS and NIS, let PIS be  0,0 and NIS be a
two-dimensional vector consisting of the minimum
match-time point and the corresponding compression
cost in the original allocating timetable generated by
SPT. The GA in Figure 1 is achieved by MATLAB
7.6.0.324. The population is grouped by continuous real
number coding and the population size is 15 . The initial
population is randomly generated. The calibration
function uses the Rank function to map the target
function values of the individual to the position in the
objective function value. This method can avoid
fluctuations in the original target value. The selection
operations are based on a random stochastic uniform
function, the cross operation is a scattered cross, and the
mutation operation is based on a Gaussian function. The
parameters in the genetic operation are the default
values.

When it generates individual offspring, the number
of elite individuals is 2 . The next generation of
individuals from the cross product is 80% , the mutation
product is 20% . The maximum evolutionary generation
is used to control the output of the genetic algorithm
with the set of the maximum evolutionary generation
equal to 100 . The remaining parameter settings are all
the default values. For each combination of n m   ,
we repeat 15 calculations. Each calculation generates
an example randomly. Comparing the original
allocating timetable of SPT and PDS to estimate the
result interval. For 100n  , 5m  , 0.10  , and

 dP t is shown in Figure 2.
From Figure 2, we can see that the maximum value

of  dP t is obtained in the product design cycle.
Corresponding to the parameters in Figure 2, the
comparison of the original executing timetable is based
on PDS and SPT, respectively, as shown in Figure 3.

From Figure 3, it is obvious that there is an
offsetting-restricting relationship between the match-up
time point and the compression cost. With the increase
of the match-up time point, the compression cost will
decrease. The greater the match-up time point, the
greater the impact caused by the design change. When
the match-up time point increases to the maximum
completion time of the task, the compression cost is
minimum. However, all the tasks have been affected by
the design change at its worst case which is
unacceptable in our design environment especially.

As can be seen from Figure 3, the minimum match-
up time obtained by PDS is 62.45, which is better than

88.98 obtained by SPT. The compression cost of PDS is
lower than SPT when the minimum match-up time is
88.98 obtained by SPT. When the match-up time is
equal to iD , the compression cost of the two methods is
relatively close, the cost of PDS is slightly lower.

Figure 2. The production design cycle.

Figure 3. The typical computing result.

In order to further quantify the effectiveness of our
approach, several indexes are used to measure the
results of multiple experiments and the PDS is
compared with the SPT. The indicators involved and
their meanings are describedas follows.

The number (NUM) of match-up time points is
selected by the decision maker. For SPT, it is the
number of two-dimensional vectors  *

minL , F that are
finally output by the algorithm flow shown in Figure 1.
For SPT, similar to the flowchart in Figure 1, after
obtaining the minimum match-up time point, we
increased the point successively when the corresponding
compression cost is calculated until the match-up time
point is equal to the length of the original allocating
timetable. In short, the greater the number is, the more
the room for decision-makers to choose.

The minimum match-up time (MMT) and the

average match-up time (AMT) are the optimal value and
the mean value of the match-up time points,
respectively, which is the core point that the decision
maker should pay attention to in the design process. The
bigger the point is, the more external activities that

1222

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

depend on the original allocating timetable, such as
resource configuration, the next processing arrangement
of the task, and so on.

The cost at the same time (CAT) indicates the
respective compression cost of the PDS and SPT at the
minimum match-up time point obtained by SPT. This
indicator considers the problem from the point of view
of comparing the cost of different methods at the same
match-up time point.

The Minimum cost (MC) and the Average cost (AC)

correspond to the MMT and AMT and reflect the

increasing minimum cost and the average cost to restore
to the original allocating timetable.

Robustness is an emphasized objective so that it
recovers to the original allocating timetable and is
required after the occurrence of the design change.
Therefore, MMT and AMT are of the utmost importance
of the above indicators.

Table 1 shows the average value of 15 tests for
each parameter combination. Table 2 provides an
interval estimate of the average improvement rate for
the 15 tests with respect to SPT in terms of the number,
MMT, AMT, and so on.

Table 1. A comparison of the absolute metric values of PDS and SPT.

Index Type Method
n = 100, m = 3,  n = 200, m = 6, 

0.10 0.12 0.13 0.15 0.10 0.12 0.13 0.15
NUM max PDS 32.73 29.87 28.33 25.33 65.00 61.07 57.47 41.07

 SPT 11.07 8.47 7.73 6.33 18.80 16.73 13.67 11.60
MMT min PDS 65.20 65.76 75.39 79.95 124.31 132.97 139.97 168.28

 SPT 92.70 95.16 100.31 100.90 184.69 194.04 199.44 207.78
AMT min PDS 92.45 90.67 97.47 98.23 178.21 184.98 187.42 203.31

 SPT 106.79 106.01 110.23 108.90 208.91 216.50 218.28 223.72
CAT min PDS 18.2 24.84 28.41 37.39 28.28 45.99 46.31 69.36

 SPT 29.97 32.64 46.44 54.88 51.39 75.52 82.49 103.72
MC min PDS 26.03 40.15 36.64 46.76 42.59 71.73 70.28 86.25

 SPT 16.48 20.83 30.07 38.85 29.07 43.94 51.55 70.49
AC min PDS 10.52 15.85 21.14 31.40 17.32 28.46 32.22 53.44

 SPT 9.75 14.14 20.64 28.83 17.54 28.44 35.19 51.52

Table 2. The 95% CI estimates of the improvement on the critical metrics of our method.
n Index 0 10.  0 12.  0 13.  0 15. 

 Lower Upper Lower Upper Lower Upper Lower Upper
100 NUM 1.61 2.68 2.11 3.52 1.87 3.60 2.15 3.93

 MMT –
0.33

–
0.26

–
0.33

–
0.28

–
0.32

–
0.18

–
0.27

–
0.14

 AMT –
0.15

–
0.12

–
0.16

–
0.13

–
0.15

–
0.08

–
0.13

–
0.07

 CAT –
0.47

–
0.29

–
0.35

–
0.07

–
0.47

–
0.25

–
0.39

–
0.25

200 NUM 2.23 2.78 2.39 3.05 2.81 3.95 1.89 3.20

 MMT –
0.34

–
0.31

–
0.33

–
0.29

–
0.31

–
0.29

–
0.24

–
0.14

 AMT –
0.15

–
0.14

–
0.16

–
0.13

–
0.15

–
0.13

–
0.11

–
0.07

 CAT –
0.51

–
0.38

–
0.43

–
0.33

–
0.47

–
0.40

–
0.39

–
0.23

Data in Table 1 and Table 2 retain two decimal
places. In this paper, a confidence level of 95% is used
to estimate the confidence interval. For a certain index,
the improvement rate is calculated as follows.

 PDS SPT

SPT

V V

V

 (15)

where
PDSV and

SPTV represent the specific values of the
two methods, respectively. As can be seen from Table 1,
first of all, PDS can provide more choices for decision-
making than SPT does, so that decision-makers can
choose the time points as early as possible.

In addition, MMT and AMT of PDS are smaller
than the corresponding items of SPT, indicating that the
original allocating timetable given in this section is

1223

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

subject to interference events during the executing
phase and can restore the system plan as early as
possible. This can effectively reduce the impact of
design change. Although AC of PDS is higher, the
earlier match-up time points in the design process can
reduce the larger losses caused by the design change.
Finally, the same cost indicator in the vicinity of the
MMT shows that the compression cost of PDS is lower
than SPT. In this paper, PDS can significantly reduce
the match-up time after the occurrence of the design
change and improve the selectable range of the decision,
and the compression cost can be significantly reduced
by SPT in the vicinity of the MMT. Therefore, PDS
gives priority to the compression time while taking the
compression costs into account.

In summary, PDS constitutes an original allocating
timetable relative to SPT, which can be more effective
in coping with the design cost, and the design system
can be restored to the original plan as soon as possible.

4.2 Reactive Allocating

It is worth mentioning that the size of experiment and
some parameters have been determined by the proposed
method based on data verification. To simplify this
problem, the inserting idle time is based on the sequence
has been identified by PDS.

Table 3 summarizes the experimental conditions.
0.12  shows its advantage in section 4.1. Therefore,
0.12  is chosen as a fixed parameter in the

exponential distribution of random unavailability. The
new tasks are assigned to VDUs according to their
attributes of design capacity, and then the position and

the idle time for the new tasks are determined within
their probability distribution.

The most popular predictive approach in the
project management and machine scheduling literature
is to leave the idle times (time buffers) in schedules in
coping with disruptions. The quality of the proposed
method PDS+IIT is compared with the SM()

reference of Yang and Geunes26.
PDS+IIT+ CETS: here, we generate the predictive

allocation by the proposed PDS +IIT, CETS as the
reactive policy.

The SPT+SM()+CETS: SPT + SM() policy is
used to generate the predictive allocation, CETS is for
the reactive policy.

 The SM() policy is used to generate an effective
allocation to provide a good solution using the SM

method (SM is a basic and effective heuristic method
developed by Rachamadugu and Morton44), and then 
units of idle time for the tasks are inserted at some point
in the allocation (both the amount of planned idle time
and the insertion position are decision variables), where
 is integer.

Table 4 and Table 5 show the performance
comparison between the proposed method PDS +IIT+

CETS and the other method SPD+SM()+CETS.
0.12  is a fixed index in the exponential distribution

of the unavailability of VDU. Therefore, the
computational experiments are performed to compare
the two methods. A quantity of six new task arrivals (10,
20, 40, 60, 80, 100) forms the first factor. It is grouped
into three types of new task arrivals (small: 10, 20;
medium: 40, 60; and large: 80, 100). Two task arrivals
are rated  ; namely, the sparse and dense task arrivals
are considered (sparse: 0.125, 0.25; dense: 0.5, 1).

Table 3. The experimental conditions.
Dimension Characteristic Specification
 Size n = 200, m = 6, 0 12. 

CPD process

Tasks arrival rate [0.125, 0.25, 0.5, 1]
The number of new tasks [10, 20, 40, 60, 80, 100]
Task release policy Immediate
Random arrival Passion distribution
Random unavailability Exponential distribution
Executing time of a design task [1, 10]

Performance measures

Makespan
Stability
Robustness
Compression cost

1224

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

Table 4. The performance measures of the two methods with sparse task arrivals.
Policy/performance

 /Scale
PDS +IIT+ CETS SPD+SM()+CETS

Ma. St. Ru. Co. Ma. St. Ru. Co.



0.125

S 10 156.23 47.23 102.44 23.44 174.63 53.63 102.44 33.65
20 171.44 55.20 113.36 26.58 188.36 64.38 113.36 39.59

M 40 195.26 60.58 126.32 29.36 214.63 71.26 132.25 42.36
60 213.32 71.15 134.55 33.56 245.29 80.65 142.85 48.56

L 80 241.85 84.62 145.36 39.64 266.86 86.59 151.36 52.57
100 263.16 92.37 156.39 49.63 285.64 98.47 163.25 56.93

0.25

S 10 164.54 52.36 109.52 34.26 186.78 60.12 109.52 36.85
20 181.23 59.38 116.32 41.28 204.63 69.25 116.32 44.56

M 40 214.59 68.94 125.68 49.29 224.69 71.36 125.68 51.96
60 245.93 79.53 133.27 54.31 259.36 86.34 139.56 58.39

L 80 266.51 89.64 145.69 61.88 286.61 94.28 159.98 69.65
100 287.75 104.35 163.52 71.36 298.64 109.88 170.25 74.44

Table 5. The performance measures of the two methods with dense task arrivals.
Policy/performance

 /Scale

PDS +IIT+CETS SPD+SM()+CETS

Ma. St. Ru. Co. Ma. St. Ru. Co.



0.5

S 10 165.59 47.23 102.44 29.36 187.36 55.36 102.44 35.62
20 178.86 55.20 113.36 34.89 196.36 69.14 116.32 42.58

M 40 201.85 60.58 135.25 46.52 209.36 72.36 142.36 49.62
60 211.96 76.15 146.93 57.65 230.86 81.36 153.96 56.32

L 80 218.74 94.62 156.39 68.22 252.54 91.20 164.85 64.21
100 223.61 106.37 166.84 78.12 271.95 100.92 171.94 75.25

1

S 10 192.54 52.36 109.52 34.98 195.36 58.56 109.52 38.65
20 224.82 70.38 116.32 46.10 230.36 72.85 121.63 44.21

M 40 251.76 81.94 146.85 57.74 259.36 80.64 155.93 57.21
60 276.16 95.53 153.85 65.66 281.69 93.85 163.86 63.21

L 80 283.39 107.64 162.55 77.33 293.53 101.22 171.22 74.64
100 301.58 116.35 176.89 86.96 310.26 108.34 186.57 84.12

Ma. : Makespan; St. : Stability (deviation); Ru. : Rubust (Minimum Match-up time); Co. : Compression cost

The results in Table 4 and 5 indicate that the
proposed method PDS +IIT+CETS outperforms
SPD+SM()+CETS from the four measures in most
experimental data. It is more capable of achieving the
optimal solutions for most case studies. In the
experiment with sparse task arrivals, the proposed
method PDS +IIT+CETS performs with the absolute
advantage on all of the measures.

When the reactive conditions are more complex
(the value setting of the task arrival rate and the quantity
of new tasks becomes bigger), a reversal appears in
some performance. This is obvious in the experiments
with dense task arrivals. When the value of  is equal
to 1, the quantity is greater than 20, the stability and
compression cost of SPT+SM()+CETS are greater
than PDS +IIT+CETS. This indicates that once there
exists a more complicated disruption, a predictive
inserting idle time method for all the tasks is a more
effective way than the proposed method. Minimizing
the insertion of the idle time is an effective method to
improve the resource utilization with sparse task arrivals.

However, in the condition of dense task arrivals, it
becomes more difficult to control the compression cost
and the stability.

The results also indicate that the proposed method
performs well for different parameter settings. It can be
observed from the table that it requires more
compression time to absorb the disruptions as the
number of tasks increase. As expected, as the length of
the disruption is increased, the proposed method tends
to generate a better solution for the match-up time
problem.

In this section, we have shown that we can
efficiently solve match-up rescheduling problems with a
controllable executing time exactly by using recently
developed reformulation techniques and commercial
solvers. It is observed that the heuristic algorithm is able
to generate a good approximation of the efficient
frontier of match-up time and compression cost quickly.
When the quantity of new tasks is consistent, the
influence on allocation is positively associated with the
arrival rate. Similarly, when the quantity is given, the

1225

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

influence is positively associated with the arrival rate as
well. The ambiguity in the description of the
coordination cost and the different measurements are
the main influencing factors for decision-makers. In the
real-world design process, the objectives for
practitioners are different. Some concentrate on the
design cost, some focus on time, and some think of the
stability, robustness, or even the balance between them.
Therefore, the four performances provide a reference for
decision-makers to make a scientific and rational
decision considering their individual situation.

5. Conclusions

In this paper, a robust predictive–reactive allocating
approach is proposed with controllable executing times.
The design change is considered in preparation for the
original predictive allocation with anticipative
probability distributions. We showed that the predictive
decision making in preparing original allocations can
avoid excessive reallocating costs resulted by reactive
executing time adjustments and this ensured the strong
robustness and stability of the design system.

In the phase of predictive allocating, the
probability of the design change is utilized to generate
the combinatorial approach with PDS and IIT. In PDS,
we estimate which task can absorb a possible
interference with the lowest cost, then determine the
task sequence on each VDU. Based on sequence, the IIT
policy is used to respond to task arrivals. This effective
combination of PDS and IIT can absorb almost all of the
interference impact caused by the design change. Four
measurements, which are Cmax, stability, robustness,
and compression cost, are adopted in this paper to
mirror the quality of the proposed approach. The
application of combinatorial optimization is tested and
verified by a computational simulation. The results of
comparing two methods within the different setting of
the parameters show its effectiveness. Two factors,
which are the task arrival rate and the quantity of the
task arrival, and their interactions are analyzed in
section 4 to indicate the interference impact caused by
the design change.

While the findings of this study improve our
understanding of the task allocations in the complex
product design process, its limitations should also be
recognized. First, in this paper, we suppose that the
design change obeys some certain distributions.
However, in the real design process, the appearance of

design change is more complex and difficult to predict.
Second, the scale and complexity of the hypothetical
design change in this paper are not fully considered.
Lastly, the compressing character in this paper assumes
that all the execution objects accept this adjustment and
act in concert with other departments. The situation that
some execution objects may not want to change their
work is also not our research focus.

Therefore, in order to further improve our
research, further research would be definitely called for.
First, as this paper only consider the exponential
distribution for VDU unavailability, it may be
interesting to consider the different combination of
Normal-Normal, Triangular-Normal, Exponential-
Normal, Exponential-Exponential distributions, and so
on. Second, it will be interesting to consider the scale
and complexity of the design change to improve the
accuracy of the predictive phase. Finally, in the further
research, the different changing will of the execution
objects should be considered to better reflect the design
process and enhance the quality of the findings.

Acknowledgements

This work is supported by the National Science
F (17YJC630198), “China
o

(

f

S
(

R

1

2

3

4

5

1226

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228
oundation of China (71701027), the Open Funding
f Chongqing Technology and Business University

KFJJ2017082), China Postdoctoral Science Foundation

unded project (2016M590929), and the Humanity and Social

cience Youth Foundation of Ministry of Education of China
IZYJC630198).
eferences

 BRUUN H P L, MORTENSEN N H, HARLOU U.
Interface diagram: Design tool for supporting the
development of modularity in complex product systems.
Concurrent Engineering.22(1) (2014) 62-76.

 SU J, YANG Y, ZHANG N. Measurement of knowledge
diffusion efficiency for the weighted knowledge
collaboration networks. Kybernetes.46(4) (2017) 672-692.

 SMITH J, SMITH J, MACIEJEWSKI A A, et al.
Stochastic robustness metric and its use for static
resource allocations. Journal of Parallel & Distributed

Computing.68(8) (2008) 1157-1173.
 BO ZENG, SIFENG LIU. A self-adaptive intelligence

gray prediction model with the optimal fractional order
accumulating operator and its application. Mathematical

Methods in the Applied Sciences. 23(1) (2017) 1-15.
 WANG Y, LI K, CHEN H, et al. Energy-Aware Data

Allocation and Task Scheduling on Heterogeneous
Multiprocessor Systems With Time Constraints. IEEE

Transactions on Emerging Topics in Computing.2(2)
(2014) 134-148.

6 HERROELEN W, LEUS R. Project scheduling under
uncertainty: Survey and research potentials. European

Journal of Operational Research.165(2) (2005) 289-306.
7 VIEIRA G, HERRMANN J, EDWARDLIN. Analytical

models to predict the performance of a single-machine
system under periodic and event-driven rescheduling
strategies. International Journal of Production

Research.38(8) (2000) 1899-1915.
8 FAHMY S A, ELMEKKAWY T Y, BALAKRISHNAN

S. Analysis of reactive deadlock-free scheduling in
flexible job shops. International Journal of Flexible

Manufacturing Systems.19(3) (2007) 264-285.
9 CARDIN O, TRENTESAUX D, THOMAS A, et al.

Coupling predictive scheduling and reactive control in
manufacturing hybrid control architectures: state of the
art and future challenges. Journal of Intelligent

Manufacturing.28(7) (2017) 1503-1517.
10 REL S, RPEOGLU E, RK M S. An anticipative

scheduling approach with controllable processing times
[M]. Elsevier Science Ltd., 2010.

11 KONG Y, ZHANG M, YE D. A belief propagation-based
method for task allocation in open and dynamic cloud
environments. Knowl-BasedSyst.115((2016)

12 VIEIRA G E, HERRMANN J W, LIN E. Rescheduling
Manufacturing Systems: A Framework of Strategies,
Policies, and Methods. Journal of Scheduling.6(1) (2003)
39-62.

13 WEI M, YANG Y, SU J, et al. Task Reallocating for
Responding to Design Change in Complex Product
Design. Journal of Intelligent Systems.(2017)

14 YANG Z E, ZHENG Q, WANG S, et al. Adaptive Task
Scheduling Strategy for Heterogeneous Spark Cluster.
Computer Engineering.(2016)

15 AYTUG H, LAWLEY M A, MCKAY K, et al.
Executing production schedules in the face of
uncertainties: A review and some future directions.
European Journal of Operational Research.161(1) (2005)
86-110.

16 FERNANDES J, HENRIQUES E, SILVA A, et al. A
method for imprecision management in complex product
development. Research in Engineering Design.25(4)
(2014) 309-324.

17 SALIMI R, MOTAMENI H, OMRANPOUR H. Task
scheduling using NSGA II with fuzzy adaptive operators
for computational grids. Journal of Parallel &

Distributed Computing.74(5) (2014) 2333-2350.
18 HUANG H. DYNAMIC SCHEDULING OF DESIGN

TASKS IN CONCURRENT ENGINEERING. Chinese

Journal of Mechanical Engineering.38(supp) (2002)
19 ALEBRAHIM S, AHMAD I. Task scheduling for

heterogeneous computing systems. Journal of

Supercomputing.73(6) (2017) 2313-2338.
20 VIEIRA G E, HERRMANN J W, LIN E. Predicting the

performance of rescheduling strategies for parallel
machine systems. Journal of Manufacturing Systems.19(4)
(2000) 256-266.

21 XU Y, LI K, HU J, et al. A genetic algorithm for task
scheduling on heterogeneous computing systems using

multiple priority queues. Information Sciences.270(6)
(2014) 255-287.

22 SU J F, YANG Y, YANG T. Simulation of Conflict
Contagion in Customer Collaborative Product Innovation.
International Journal of Simulation Modelling.14(1)
(2015) 134-144.

23 ZHENG Y J, YANG Y, ZHANG N, et al. Analysis
model for impact of change on complex product design
tasks based on in-degree evolving rules. Computer

Integrated Manufacturing Systems.23(7) (2017) 1423-
1428.

24 KAYVANFAR V, ZANDIEH M, TEYMOURIAN E. An
intelligent water drop algorithm to identical parallel
machine scheduling with controllable processing times: a
just-in-time approach. Computational & Applied

Mathematics.36(1) (2017) 159-184.
25 COLIN E C, QUININO R C. An algorithm for insertion

of idle time in the single-machine scheduling problem
with convex cost functions. Computers & Operations

Research.32(9) (2005) 2285-2296.
26 YANG B, GEUNESB J. Predictive–reactive scheduling

on a single resource with uncertain future jobs. European

Journal of Operational Research.189(3) (2008) 1267-
1283.

27 SHABTAY D, ZOFI M. Single machine scheduling with
controllable processing times and an unavailability period
to minimize the makespan. International Journal of

Production Economics.(2018)
28 WANG F, ZHAO C. Single Machine Scheduling

Problem with Controllable Processing Times. Journal of

Chongqing Normal University.29(6) (2014) 20-25.
29 WANG J B, LIU M, YIN N, et al. Scheduling jobs with

controllable processing time, truncated job-dependent
learning and deterioration effects. Journal of Industrial &

Management Optimization.13(2) (2017) 60-60.
30 RENNA P, MANCUSI V. Controllable processing time

policy in job shop manufacturing systems: design and
evaluation by simulation modelling. International

Journal of Services & Operations Management.27(3)
(2017) 366.

31 AKT RK M S, ATAMT RK A, G REL S. Parallel
machine match-up scheduling with manufacturing cost
considerations. Journal of Scheduling.13(1) (2010) 95-
110.

32 NUNES E, MANNER M, MITICHE H, et al. A
taxonomy for task allocation problems with temporal and
ordering constraints. Robotics & Autonomous

Systems.90(C) (2016) 55-70.
33 ELNATTAT A, A. ELBAHNASAWY N, ELSAYED A.

A New Task Scheduling Algorithm for Maximizing the
Distributed Systems Efficiency. International Journal of

Computer Applications.110(9) (2015) 09-16.
34 YANG ML, LEI H, LIAO Y. A shared resource-aware

real time task allocation algorithm. Chinese journal of

computers.37(7) (2014) 1455-1465.
35 SHABTAY D, STEINER G. A survey of scheduling with

controllable processing times. Discrete Applied

Mathematics.155(13) (2007) 1643-1666.
36 FEDERICODELLACROCE, MARCOTRUBIAN.

Optimal idle time insertion in early-tardy parallel

1227

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

machines scheduling with precedence constraints.
Production Planning & Control.13(2) (2002) 133-142.

37 LIU A, HU H, ZHANG X, et al. Novel Two-Phase
Approach for Process Optimization of Customer
Collaborative Design Based on Fuzzy-QFD and DSM.
IEEE Transactions on Engineering Management.64(2)
(2017) 193-207.

38 QU Z, KEENEY J, ROBITZSCH S, et al. Multilevel
Pattern Mining Architecture for Automatic Network
Monitoring in Heterogeneous Wireless Communication
Networks. China communications).13(7) (2016) 108-116.

39 CAO X B, CHENG-DONG X U, CHUN-SHENG H U.
Virtual manufacturing unit in cloud manufacturing.
Computer Integrated Manufacturing Systems.18(7) (2012)
1415-1425.

40 LIU A, PFUND M, FOWLER J. Scheduling optimization
of task allocation in integrated manufacturing system
based on task decomposition. Journal of Systems

Engineering and Electronics.27(2) (2016) 422-433.
41 WANG K, CHOI S H. A decomposition-based approach

to flexible flow shop scheduling under machine
breakdown. International Journal of Production

Research.50(1) (2012) 215-234.
42 SU J, YANG Y, ZHANG X. A Member Selection Model

of Collaboration New Product Development Teams
Considering Knowledge and Collaboration. Journal of

Intelligent Systems. 27(2) (2016) 213–229
43 CAO X, CHENGDONG X U, CHUNSHENG H U, et al.

Design resources agglomeration methods based on design
ability. Computer Integrated Manufacturing Systems.21

(9)(2015) 2296-2311
44 RACHAMADUGU R V, MORTON T E. Myopic

Heuristics for the Single Machine Weighted Tardiness
Problem. Myopic Heuristics for the Single Machine

Weighted Tardiness Problem.(1982)

1228

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1210-1228

