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Abstract 

In the highly dynamic complex product design process, task allocations recovered by reactive allocating decisions 
are usually subject to design changes. In this paper, a robust predictive–reactive allocating approach considering 
possible disruption times is proposed, so that it can absorb the disruption in the executing process and utilize the 
limited capacity of resource more effectively. Four indexes (Makespan, stability, robustness, and compression cost) 
are used to measure the quality of the proposed method. To illustrate the novel allocating idea, we first assign tasks 
to resources with the objective of a trade-off between the overall execution time and the overall design cost, which 
can transform the problem into a non-identical parallel environment. Then, the probability distribution sequencing 
(PDS) method combining with inserting idle time (IIT) is proposed to generate an original-predictive allocation. A 
match-up time strategy is considered to match up with the initial allocation at some point in the future. The 
relationship between the minimum match-up time and the compression cost is analyzed to find the optimal match-
up time. Our computational results show that the proposed sequencing method is better than the shortest processing 
time (SPT) which is a common sequencing way mentioned in the literature. The robust predictive–reactive 
allocating approach is sensitive to the design change, which is helpful to reduce the reallocating cost and keep the 
robustness and stability. 
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1. Introduction 

Complex products such as large technical systems are 
inherently complex to design. Complex Product Design 
(CPD) are developed through decomposition into a 
series of sub-systems and components1, 2. 
Macroscopically, decomposition creates many 
interdependencies linking design tasks performed by 
different designers from different domains which are 
responsible for the synthesis of solutions for different 
parts of the system. To guarantee the design process in a 
controllable state without sufficient knowledge about 
the imprecision caused by different kinds of design 
change is the essential issue for the success of CPD. 

The existing literature, on problems of task 
allocating, mainly considers the environments with 
static and deterministic versions3, 4. However, the actual 
allocating problem of CPD in real life is dynamic and 
uncertain2,4, since a design change occurs inevitably and 
then disrupts the execution of CPD processes. 
Numerous interdependencies in CPD imply that any 
design change may trigger arbitrary design variables 
which could affect or diffuse the degree of uncertainty 
of the variables that it is connected to. Thus, managing 
design change is important for decision-makers to carry 
out a controllable CPD process.  

Design change necessitates reallocating the 
remaining tasks of the initial allocation plan. The high 
efficiency and timeliness of task allocating are 
particularly important. To the best of our knowledge, 
most studies in the literature are based on the exact 
values of the actual conditions. In a dynamic 
environment, especially for CPD process, it is difficult 
to guarantee the precise value of the task execution time, 
the completion time, and the delivery5. On the other 
hand, task allocating is flexible and learnable, that is, 
the execution time is variable and controllable. The 
controllability of the executing time provides flexibility 
in reallocating against unexpected design changes by 
compressing the executing time6. In addition, the 
existing task allocation strategy concentrates on the 
coordination efficiency when a design change occurs 
but lacks the ability to anticipate design change. The 
performance of reallocating strategies highly depends 
on the allocation state at the time of disruption7. Under 
the condition of incompletely accurate information, it is 
of great practical significance to study the CPD task 

allocation method which has the ability to predict 
abnormal factors and processing real-time problems. 

Predictive–reactive scheduling is a 
scheduling/rescheduling process in which schedules are 
revised in response to real-time events8. The predictive–
reactive scheduling strategies are mianly based on 
simple allocation adjustments which consider only 
efficiency9. The new schedule may deviate significantly 
from the original schedule, which can seriously affect 
other planning activities in the original schedule, and 
may weaken their performance. Therefore, it is 
desirable to generate the robust predictive–reactive 
schedules, to minimize the effects of disruption on the 
performance of planning activities. A typical solution to 
generate a robust schedule is to reschedule by 
simultaneously considering both efficiency and 
deviation from the original schedule, that is, the stability. 

Two kinds of major negative impacts on the original 
allocations are accompanied by design change. First, it 
degrades allocation performance. This effect is the topic 
of robustness. Second, unforeseen design changes cause 
variability. This effect is the topic of stability. A 
schedule whose realization does not deviate from the 
original schedule in the face of disruptions is called 
stable.  

To illustrate the robust predictive–reactive 
allocating approach with the compressibility of 
controllable execution time, a task-resource assignment 
is obtained to transform this problem into a parallel non-
identical resources problem firstly. The objective of this 
problem is to keep the trade-off of the overall execution 
time and overall design cost. Then, the optimal 
compression levels on the executing time of the task are 
estimated to support the task sequencing on each Virtual 
Design Unit (VDU, which is a specific definition 
described in Section 3). In this paper, the probability 
distribution of design change is considered to find the 
executing sequence on each VDU (we combine the 
advantages of inserting idle times and controllable 
executing times). When design change occurs, a match-
up time strategy is applied to catch up with the original 
allocation. In the considered reactive allocating problem, 
the objective is to minimize the change-adaption cost 
caused by disruptions, subjected to the condition that 
the reallocation needs to match up with the original 
allocation at the match-up time point after disruption10. 
The performance comparison of the proposed approach 
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and other common approaches in the existing literature 
is discussed. 

2. Literature Review 

2.1 Task allocating approach 

In the literature of allocating approaches, completely 
reactive allocating, predictive–reactive allocating, and 
robust pro-active allocating have been considered 
extensively11-13. In those studies, the allocation is 
usually restored within a slight adjustment to the control 
the performance degradation. Yang et al.14 presented an 
adaptive task scheduling strategy for heterogeneous 
Spark cluster, which could analyze parameters from 
surveillance to adjust the task allocation weights of 
nodes.Aytug et al.15 gave an extensive literature survey 
on allocating under uncertainty and generating robust 
allocations. Fernandes et al.16 presented an imprecision 
management method to support large organizations for 
design process management. Salimi et al.17 improved 
the NSGA-II using fuzzy operators to improve the 
quality and performance of task scheduling in the 
market-based grid environment. In their research, the 
load balancing, Makespan and Price are regarded as the 
three important objectives for the task scheduling 
problem. Huang18 proposed a dynamic scheduling 
method with the objective of the shortest project 
implementing time in order to optimize the design task 
scheduling and make adequate use of the resources in 
concurrent engineering. AlEbrahim and Ahmad19 
proposed a new list–scheduling algorithm that schedules 
the tasks represented in the directed acyclic graphs, and 
the new algorithm could minimize the total execution 
time by taking into consideration the restriction of 
crossover between processors. Vieira et al.20 presented 
new analytical models that could predict the 
performance of rescheduling strategies and quantify the 
trade-offs between different performance measures. In 
order to obtain the task scheduling scheme on 
heterogeneous computing systems, Xu et al.21 developed 
a multiple priority queues genetic algorithm, which 
combines the advantages of both evolutionary-based 
and heuristic-based algorithms. Based on the above 
review, the existing studies in the literature mainly 
assume fixed executing times. In this paper, we consider 
anticipative allocating with controllable executing times 
which have been discussed rarely to the best of our 
knowledge. 

2.2 Compressing Execution Time 

Design change such as customer’s requirements change, 
temporary change of design content, technological 
innovation could deteriorate the stability and efficiency 
of the design process and make an unpredictable impact 
on the quality of complex products22, 23. Inserting idle 
times in the original allocating plan is a well-known 
predictive allocating approach to minimize the effects of 
possible disruptions on an allocation so that disruptions 
can be absorbed by the time buffers13, 24. Colin and 
Quinino25 addressed a problem of optimally inserting 
idle time into a single-machine schedule and proposed a 
pseudo-polynomial time algorithm to find a solution 
within some tolerance of optimality in the solution 
space. Yang and Geunes26 considered a predictive 
schedule where a firm must compete with other firms to 
win future jobs, and they proposed a simple algorithm to 
minimize the sum of the expected tardiness cost, 
schedule disruption cost, and wasted idle time cost. Wei 
et al.13 proposed a controlling executing time strategy in 
product design process, where the executing time can be 
controlled by inserting idle time. Shabtay and Zofi27 
studied the single machine scheduling problem where 
job processing times were controllable, and developed a 
constant factor approximation algorithm to find the job 
schedule that minimizes the makespan. Wang and 
zhao28 considered the due date assignment and single-
machine scheduling problems with learning effect and 
controllable processing times, which depended on its 
position in a sequence and related resource consumption. 
Wang et al.29 considered the single machine scheduling 
problems with controllable processing time, truncated 
job-dependent learning and deterioration effects. Renna 
and Mancusi30 developed a multi-domain simulation 
environment considering the management of job-shop 
manufacturing systems with machines characterised by 
controllable process times. 

In any idle time insertion approach, when execution 
time is fixed, inserting idle time is an effective way to 
deal with dynamic uncertain allocating. If no design 
change occurs or if it occurs after the inserted idle times, 
then the time buffers could be insignificant and increase 
the extra idle time costs. Studies in the literature assume 
an immutable execution time. However, the executing 
time of the design task is self-adaptive and more 
flexible than the problem in job shop scheduling. We 
can shorten the executing time by design innovation and 
efficient cooperation. This feature determines that the 
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execution time of the design task is variable and 
controllable. Analogously, inspired by inserting idle 
times, we propose that we can use times to absorb the 
influences caused by design change. it is critical to find 
the positions of the jobs in the initial schedule in an 
appropriate order so that a possible disruption is 
absorbed immediately and with a reasonable resource 
cost increase. The executing time is compressed, 
whereas the compression cost is increased due to the 
increased consumption cost of the resources. Therefore, 
the probability distribution sequencing (PDS) method 
combining with inserting idle time (IIT) is proposed to 
generate the original predictive allocation, and CETS is 
used to react to disruptions by resetting the executing 
time. Consequently, the limited capacity of design 
resources can be utilized more effectively. 

2.3 Contribution 

The actual performance of allocating settings often 
differs from the planned because of the design change. 
The deviations in the execution time and other uncertain 
events always lead the allocations to inaccuracy or 
infeasibility26, 31, 32. They negatively increase the 
variability in the system, which deteriorates the 
allocating performance in turn, and eventually, the 
design change upsets the system performance or lead to 
infeasibility. In CPD processes, it is difficult to avoid 
the disturbance of design change. The existing literature, 
in response to real-time events, mainly consider single 
objectives such as efficiency33, 34 or time31, 35 but ignore 
the balance and the robustness of the whole system. 

Controllers need to optimize their process of how to 
execute all the design tasks and react to all the 
disruptions due to design change. It is imperative to 
form an anticipative initial allocation that guarantees the 
efficiency of allocation to react to the real-time design 
change. The existing literature always assume that the 
task-resource assignment is known, the executing time 
is fixed, or the sequence is determinant36-38. This can 
simplify the real-time problem but the capacity of 
design resources will be under-utilized. To the best of 
our knowledge, generating a flexible allocation 
completely, with a controllable execution time and 
determining the executing sequences with the design 
change consideration has not been studied well in the 
literature.  

In this paper, we attempt to employ an anticipative 
allocation with controllable executing time. Two steps 

are involved in our anticipative approach. The first step 
is to assign tasks to limited resources with the objective 
of cost and time with the heuristic algorithm. The 
second step is to determine the executing sequence on 
each VDU by considering the flexibility measures and 
the disruption probability function. 

3. Problem Statement  

In order to absorb the disturbance caused by the 
uncertain design change, we develop a robust 
predictive–reactive task allocating approach to form the 
task assignment. We first introduce an allocation model 
to assign tasks to limited resources over time according 
to some constraints. Then, we need to find the sub-task 
sequence on each VDU by determining the compressing 
levels of tasks and considering the probability 
distributions of design change. Finally, when design 
change occurs, we use a match-up time strategy to keep 
the trade-off between the design cost and match-up time. 

In this paper, each design task can be decomposed 
into a different number of sub-tasks. The required 
granularity of the design resource is related to the 
division granularity of the design task. When some 
similar design tasks are accepted in the design platform, 
the platform chooses the candidate executors from the 
design resource pool. Accordingly, the task cannot be 
completed with unitary resources. To realize the 
efficient use of design resources, a Virtual Design Unit 
(VDU)39, 40 is taken as the basic task executing unit. 
VDU is an effective integration of the design resource 
monomer, such as a designer, computing device, 
software/hardware, tool, and design knowledge model, 
which cannot complete a certain design task 
individually. According to the design task requirement, 
VDUs are dynamically generated by organizing 
different design resources. Design tasks are assigned 
with short time, low cost, and equilibrium load, and 
designers in VDU are the executing subject. VDUs are 
connected by the design task sequence executed in the 
design process. 

A general definition of allocating problems with 
controllable task executing times is stated as follows: A 
design process contains m VDUs, presented by the set 

of  1 2 mU ,U ,...,U , and the product design is 

decomposed into n  tasks  1 2 nT ,T , ...,T  after analysis. 
The ultimate goal of task allocation is to assign design 
tasks to VDUs optimally according to a certain design 
sequence in order to determine the starting time, 
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completion time, and to ensure that it can be completed 
in the delivery period. When the design change occurs, 
it seeks responses quickly and effectively to ensure the 
trade-off between the original target and reallocated 
objectives. 

The basic definitions and descriptions are shown 
below. 

Definition 1. The design tasks can be decomposed 
into a series of determined design sequences. Let 

ij i{T , j 1,2, ..., N} denote the design sequences, 
iN  denotes the total number of sequences in each 

design task. ijT  U denotes the set of VDU which can 
execute the sequences ijT  , that is, the design sequences 

ijT  can be completed by any VDU in ijT  U . 
 

Definition 2. 

 ijk ij

ijk

X = 1, T  is executed by VDU k   
X = 0,  others

 

ijpqk ij pq

ij

ijpqk

Y = 1, T and T  is executed by VDU k,
and T  has the priority 

Y = 0, others 



  

ijkX  is the condition of discrimination that the 
design sequences ijT  is executed by the VDU k . ijpqkY  
is the priority condition of discrimination that the design 
sequences ijT  and pqT  is executed by the VDU k . 

The quality of the solution is measured by four 
criteria: the first one, 1F  (Cmax), is an allocating 
criterion dependent on the task completion times. Cmax 

is considered in the task assignment, but not considered 
in the sequencing phase. The second one, 2F , is the 
design cost, which is a fixed cost, f

ijC , determined by 
the length of the executing time, plus the compression 
cost c

ijC , which is incurred if the executing time is 
compressed, determined by the amount of the 
compression time. Unforeseen disruptions cause 
variability, any deviation can disrupt these activities and 
increase the system nervousness. Thus, in robust 
predictive–reactive allocating approaches, we develop 
the third one, 3F  (Stability), which is the sum of the 
deviation of the starting time from the original schedule. 

4F  is the Robustness measured by the minimum match-
up time. 

We divide the allocating problem into two stages. 
The first one is task assignments. The second one is 
sequencing and inserting. There are two steps in the first 
stage of task assignments. Step one is task 
decomposition and classification. In this phase, the 
product design tasks or part design tasks are divided 
into orderly subtasks sets. Step two is the VDU 

discovery and VDU task assignment. VDU discovery 
provides a list of available VDUs and VDU task 
allocation involves the selection of feasible VDUs and 
the mapping of tasks to the VDUs. Similarly, there are 
two steps in the second stage. The first one is to 
determine a good design sequence for tasks on each 
VDU. The second one is to determine where to place 
the idle time and the amount of time for each arrival 
task. 

3.1  Initial VDU-Task Allocation 

3.1.1 Classification of Design Change 

The design resource and design task are the most basic 
elements in CPD. The adjustment and conversion of the 
executing state of the design task and resource is the 
main reason leading to reallocation. In this paper, we 
classify design change into two categories: resource-
related and task-related design changes41. Specifically, 
resource-related changes mainly contain the resource 
joint, resource withdrawal, unavailability, designer 
absence, tool failures, delay in the arrival or shortage of 
materials, resource capacity decrease, and so forth. 
Task-related changes conclude the task joint, task 
cancellation, due date changes, task adjustment, early or 
late arrival of tasks, rush tasks, changes in task priority 
or processing time, and so forth. 

As the predictive schedule is executed, it becomes 
subject to alterations due to the status of uncertain 
design change. In this paper, we mainly follow with 
typical types in design change. We call the resource-
related changes as Type 1 design changes. Alternatively, 
we refer to task-related changes as a Type 2 design 
changes. In Type 1 design changes, resource 
unavailability is frequently discussed in the existing 
literature. It is manifested as an unavailability at some 
point, before recovering after a period of repair. In Type 
2 design changes, we mainly consider the new task 
arrivals. When an uncertain task arrives at some point, 
the reactions to this disruption should be applied 
immediately to obtain the executing time for the new 
task. 

3.1.2 Original VDU-Task Assignment 

If the supervisor associated with the task chooses the 
VDU to execute the task, we say that the VDU “wins” 
the task. If the VDU is unavailable at some point, we 
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say that the VDU “loses” the task. We assume that no 
task preemption is allowed. The original objective of 
this problem is to achieve a set of tasks to be allocated 
on parallel non-identical VDUs. 

As for similar tasks allocation in CPD process, the 
problem of assigning design tasks to VDUs in such a 
way as to maximize the overall performance is a 
challenging one. In this section, we solve a parallel 
VDU-task allocation problem to minimize 1F  and 2F . 
In a parallel VDU environment, each task must be 
processed by any one of the m  VDUs, where each 
VDU has a different designing ability for each task. 

In this paper, we assume the resource is non-
renewable and its availability has an upper bound 

uD  (a 
given parameter). In CPD processes, we can control the 
executing time by increasing the resource consumption, 
such as additional money and overtime. A mathematical 
formulation of the problem is as follows: 

 1 max max ,
j

j T
j

j T

e
F C e

m





  
   

  

           (1) 

   2

1 1

n m
f

ij ij ijij

j i

F C x f y
 

           (2) 

 
1

. .
n

ij ij ij i

j

s t e x y D



         (i) 

              , 1,..., , 1,...,u

ij
ij ij ij j nl iy x y m    

           
1

1, 1, ...,ij

m

i

x j n


   

                0,1 , , 1,..., , 1,...,ij ijx y j n i m      

  3

1 1
ij

n m
r

ij

j i

F stability s s
 

         (3) 

 4 min MUTPF robustness        (4) 
 1 2min (1 )Ff F            (5) 

The executing times of a task on a VDU can be 
compressed by a consumption cost of the resources with 
non-linear growth, that is, the change-adaptation cost, 

c

ijC . The change-adaptation cost function for task j  on 

the VDU is  ij ijf y , which is decided by the amount of 
compression ijy . ijy  contains the optimal 

compressibility *

ijy  and the secondary compressibility 
2

ijy . u

ijy  is the upper bound of the amount of 
compression. On each VDU, there is a given available 
VDU time capacity iD . ijl  is a specified limit 0ijl  . A 
weight   is associated with the two objectives. If 1  , 
we choose the assignment with the minimum time. If 

0  , we choose the VDU-task assignment which has 

the minimum design cost. In this paper, we try to 
minimize 2F  subject to 1F K , where K  is a given 
upper bound. 

In this paper, we assume that the capacity on each 
VDU is initially the available time

iD , where 
i uD D . 

Then, the objective function can be regarded as a 
mixed-integer nonlinear programming problem. In this 
section, the compression of executing times is not 
allowed, 0ijy  . Thus, the VDU-task assignment 
problem is reduced to the classical generalized problem. 
Currently, such problems have been well solved by 
using heuristic algorithms. To solve this problem, we 
use a genetic algorithm for the VDU-task assignment 
problem.  

3.2  Predictive Allocating 

Design change has been classified into resource-related 
and task-related. It is uncertain which VDU will fail, at 
what time, and how long it will take to repair an 
unavailable VDU. Tasks arrive at the system 
dynamically over time. We assume that the probability 
distributions times are known. After analysis of the 
related literature, we selected the distribution which 
presented a good performance. The distribution of the 
task arrivals process closely follows a Poisson 
distribution. Hence, the time between task arrivals 
closely follows an Exponential distribution and the time 
between the two VDU unavailability and the recovery 
time are assumed to follow an Exponential distribution26. 
Task arrivals require resource occupation to place the 
new tasks. Consequently, the original unfinished task 
will be compressed to make enough space for task 
arrivals. 

3.2.1 Original VDU-Task Assignment 

Step1: Priority measure 
We provide a set of priority measures to be 

evaluated for each task. We will use the flexibility 
measures in deciding which tasks are appropriate to 
schedule at risky time zones. When determining the 
optimal initial compression amount *

ijky  for task j , it is 
not considered for the sum of the fixed machining costs 
of all the tasks 

1

n

j

f

ijC
  because it is fixed constant. In 

this paper, we assume that the compression cost, that is, 
the c

ijC  of each task, can be expressed as a 

function  ij ijf y  of 0y   as follows: 

    

1

min min ij ij

n
a

ij ijij

j

b
hyf y



             (6) 
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where 0a b   and 0h  . By solving the convex 
programming Equation (6), the optimal initial 
compression amount *

ijky  of task j  is obtained. 
When there is a Type 1 design change, it is crucial 

to restoring the normal operation of the system as soon 
as possible. Further compression of some of the 
compressible tasks is needed for absorbing the duration 
of the interference event and the time at which the task 
has been processed while the interference is occurring.  

Due to the function  f y  being convex, the cost 
of compressing a period of time through multiple design 
sequences is significantly lower than a single design 
sequence compressing the same period of time and it is 
consistent with the actual situation. However, if the 
optimal compression amount of the interference interval 
has been overdrawn and still cannot match the original 
scheme, we need to adopt the second compression to 
further compress for some compressible tasks. It is 
necessary to determine the order of compression based 
on the relationship between the secondary compression 
amount and the increasing cost. That means, when the 
change occurs, we should consider how to define the 
sequence of the task that is waiting to be compressed. 

The absorption capacity is mainly reflected in the 
compression time. The increasing of the compression 
cost is the secondary consideration of the target. In the 
existing literature, the factors that affect the influence of 
tasks absorption interference are the remaining 
compressible amount 

ijv  of task j ; the executing time 

ije ; the second derivative  " *

ijf y  of the change 
adaptation cost function in the optimal point of 
compression *

ijy , and the average slope of change-
adaptation cost function  . 

jr  is the direct reflection of 
the ability to absorb interference effects of task j . It 
cannot absorb the interference effect anymore if 0ijv  . 

However, ije ,  " *

ijf y , and   reflect the absorption 
capacity of task j  from the perspective of the changes 
in the compression costs. If *

ij ijy < u , the first derivative 

of the change-adaptation cost is equal at *

ij ijy = y  for the 
different task j . Therefore, we use the second 

derivative  " *

ijf y  of the change adaptation cost 

function in the optimal point of compression *

ijy  to 
measure its cost rate of change. 
    2" * *

ij ijf y f y                           (7) 

  ij ij ijv u y                                (8) 

  
   *

ij ij

*

ij ij

f u - f y
=

u - y
                           (9) 

From the above analysis, it is obvious that the 
effect of 

jr  on the absorption interference of the task is 
positive (the greater the value is, the stronger the 
capacity of the absorbing interference effects). ije , 

 " *

ijf y , and   are negative on the effect of 
interference absorption (the greater the value is, the 
weaker the ability to absorb the impact). With the 
consideration of four factors, in this paper, we design 
compound sequencing rules to determine the priority of 
task j , which can be formulated as 

 
 

2 3 4
1ij ij " *

ij ij

O = * v
e f y

  
   


         (10) 

. . 0,k 1,...,4ks t       
This study assigns a higher priority to tasks with 

weaker ability. Thus, for any task j , the smaller the 
value of 

ijO  is, the higher priority it has. When 0jr  , 
the task cannot absorb any interference events at this 
moment so that the priority is the highest for this task. 

Step2: Probability distribution sequencing 
Let iX  be the random variable defining the losing 

time of VDU i , and iY  be the random variable defining 
the recovery time after this design change occurs. After 
giving the losing time and recovery time distributions 
for VDU i , we can calculate the probability  dP t  that 
it will be unavailable at a certain time t  in the available 
time  0, iD  of VDU i .  

      , 0,d i i i iP t P X t X Y t D            (11) 
We consider that the probability density function 

of iX  as a unimodal function on  0, iD , similar to the 

research of Gurel et al10. Then,  dP t  is unimodal on 

 0, iD .  dP t  can obtain the maximum value at a 

certain point within interval  0, iD , and the minimum in 
the interval boundary. This section will utilize this 
attribution to determine the sequence of the tasks j  on 
VDU i . 

Let xf , xF , yf , and yF  be probability density 
functions and distribution functions of continuous 
random variables iX  and iY , respectively.  
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P

f x dx

f x dx

f x d

Y t x

F xt x











        

  

  







 

Similarly, conditioning on y  immediately brings 
up the second y  equality. 

After determining the priority of the tasks and the 
probability that the VDU lose the task for a moment on 
the interval  0, iD , we design a probabilistic 
sequencing algorithm to place the tasks. First, we 
choose the task *j  with the highest priority to place at 
the boundary. This step places the task with the worst 
capacity of absorbing interferences to the period with 
the lowest probability of losing the task. Similar to this 
sequencing rule, we place the tasks with the minimum 
priority to the positions with the maximum probability 
of unavailability. When we evaluate two alternatives, 
the left boundary and right boundary, we need to check 

the *

2
j

dP
e 

 
 

 and *

2
j

d iP D
e 

 
 

, which correspond to 

the left boundary and right boundary, respectively. If 
* *

2 2
j j

d d iP P D
e e   

    
   

, we place the task *j  at the 

left boundary, else, at the right boundary. Then, the 
probabilistic sequencing algorithm updates the 
remaining available interval and selects the highest 
priority from the remaining parts of the tasks to place at 
the right boundary. The algorithm repeats the operation 
until the initial executing allocation is obtained. 

3.2.2 Original VDU-task assignment 

We first generate a predictive schedule with uncertain 
task arrivals, which includes an amount of planned idle 
time equal to or less than the executing time of the risky 
task. 

For the Type 2 design change, let 
 1 2, ,..., kUT UT UT UT  be the set of uncertain 

tasks, ^ 1,2,...,kj  . We assume that each task ^j  has 
an associated release date ^jr  , which is the earliest time 

at which the task can begin executing. Similarly, each 
task is resolved at time ^jt , therefore, there is such a 
relationship ^ ^j jt r . Each VDU has a given iD  and an 
upper capacity uiD . After generating the task sequence 
on each VDU i , let aiT  be the total tasks on each VDU 

i . 
1

m

ai

i

T T


 . We can calculate the total executing time 

j

1

,T
n

i ij ai

j

E e T


   on each VDU i . Therefore, there is a 

total of iR  units of remaining time, given by the 
formula i i i ui iD E R D E    . 

For the sake of brevity, we only explicitly discuss 
the limited uncertain arrival tasks. We assume that there 
are arrivals tasks ik  on each VDU i . It must satisfy 

^
^ 1 1

k m

j i

j i

Re
 

   and ^

^ 1

ik

j i

j

Re


  

For each arrival task, the VDU has a probability 
^j  to win the task. The goal is to determine the 

optimal idle time length   and the insertion position  . 
For each uncertain task, we allocate ^j  units of 
executing time, where ^ ^0 j je  . 

Our first goal is to generate a predictive allocation 
based on the sequence determined in Section 3.2.1. 
Then, we insert   units of idle time for the risky task 

^j  at some point in the schedule (both the amount of 
planned idle time and the insertion position are decision 
variables), where   is an integer. If the task ^j  is 
inserted in position k  in the allocation plan, we denote 
the resulting allocation as  ,pA k . 

A branch-and-bound algorithm can find an optimal 
solution to the overall problem. Therefore, in this paper, 
we utilize a branch-and-bound algorithm to determine 
the optimal amount of planned idle time for each arrival 
task when the sequence is predetermined. While such 
branch-and-bound approaches are exponential in the 
worst case, the average-case performance often allows 
solving medium size problems in acceptable computing 
time33. The remainder of this section focuses on 
determining the optimal amount of planned idle time for 
a predetermined sequence of jobs. 

Given a predetermined sequence of tasks, without 
loss of generality, we denote the thq  task on VDU i  in 
the sequence as task  _q i . In the dynamic 

programming recursion, at any stage j , let  jz t  
denote the expected cost of the sequence of tasks 
   1_ ,..., _i q i  when task  _q i  has an expected 
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completion time equal to t . We define  0 0z t   and 
0 t    as a set of boundary conditions where t is a 
state variable. By definition, for the fixed sequence of 
jobs, the optimal amount of idle time for each job is 
obtained by taking  0mint nz t

. We create the 
predictive allocation with 

 _q i
  units of executing time 

for task  _q i , where 
 _q i
  is a decision variable. In 

stage j , we already have the schedule for tasks 

   1_ ,..., _ 1i q i   and now consider task  _q i . Let 't  

denote the expected finishing time of task  _ 1q i  . 

The goal is to determine the location of the 
insertion and the time of insertion. It should be noted 
that we assume that the upper bound of the VDU i  is 
that all the execution times on a VDU in the stage of 
sequence determination. In this section, the upper bound 
has changed into uiD  which equals to ui i iD R E   as a 
given value. Namely, there is no need to control the 
predetermined value of uiD  to limit the insertion time. 
However, it is critical to moving the existing task left or 
right to place the idle time. In this paper, we assume the 
distribution function is a convex function. Accordingly, 
if the arrival position k  is on the left side of the 
maximum probability task position, we move the tasks 
to the left of k  to the left. Similarly, if the arrival 
position k  is on the right side of the maximum 
probability task position, we move the tasks to the right 
of k  to the right. 

3.3 Reactive Allocating 

We consider two possible reactions to design change. 
Reaction A: Compressing Execution Times Strategy 

(CETS); Reaction B: Absorbing by idle time. For type 1, 
the behavior of reaction A determines the sequence and, 
in turn, we utilize the special sequence to absorb the 
impact by compressing the executing times of task j . 
For type 2, the behavior of reaction B determines the 
position and time of its insertion. If the idle time cannot 
absorb all the disruptions, the neighboring task is used 
to deal with the remaining executing time. Most of the 
literature considers the RSH and Compression methods. 
In this paper, we consider the controllable executing 
times, and thus, the utilization of compressibility of 
RSH is too low. Therefore, we chose the Compression 
method to react to the Type 2 design change. Therefore, 
in order to reduce the impact of interference, the CETS 

is used to react to both Type 1 and Type 2 design 
changes.  

3.3.1 Reactive Allocating for Type 1 Design 

Change 

The goal is to achieve the trade-off between robustness 
and compression cost (the fixed cost is determined by 
the executing time, the final executing time is definitely 
less than the Cmax on each VDU, therefore, we think 
that there is no change in the part of the fixed cost). 

We introduce alternative match-up scheduling 
problems for finding schedules on the efficient frontier 
of this time/cost tradeoff. The execution time of a 
design task can be compressed by a non-linear 
consumption cost of the resources. In rescheduling with 
controllable executing times, catching up an initial 
schedule earlier is possible by extensively compressing 
the tasks that are scheduled just after the disruption. 
With convex compression costs, absorbing a downtime 
by compressing a smaller set of tasks in the schedule 
results in higher compression costs. Hence, there is a 
trade-off between the match-up time and the cost of the 
new schedule. 

In order to respond to the design change, we need 
to judge whether the reallocation point is triggered and 
which strategy to use. When it responds to change, if we 
use the CETS, we need to calculate the extent of the 
damage and work out the scope of influence 
simultaneously, then we need to select the affected task 
set and compress the executing time to make the scheme 
run in accordance with the initial one as soon as 
possible. Due to the fact that the parameter value 
   i 1 2 3 4= , , ,      has a greater impact on the 
reallocation, the inappropriate selection of parameter 
values may result in a larger compression cost and a 
larger match-up time point. Therefore, the core problem 
in this section is to choose the appropriate value  i  to 
reduce the compression cost and ensure stability. 
Therefore, once a design change occurs, the allocation 
system can be restored as soon as possible and execute 
in the light of the original allocation. Let 

minM  be the 
minimum match-up time point for the new allocation 
and the original allocation after the design change event 
occurs during the execution of the original allocation 
and continues for a period of time. Since it is almost 
impossible to establish the analytical relationship 
between 

minM  and  i , the optimal parameters cannot 
be obtained by the classical mathematical optimization 
theory. In order to solve this problem, a universal 
approach is needed to solve this uncertain structural 
problem. The genetic algorithm (GA) as a kind of 
intelligent optimization method has been successfully 
applied in industrial engineering, artificial intelligence, 
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automatic control, and other fields because of its 
inherent parallelism, strong searchability and the 
universality of different structural problems42. Here we 
design the basic genetic algorithm (GA) to solve the 
problem. 

The basic elements of the genetic algorithms are 
coding, individual evaluation, and genetic operation. 
They are described as below: 

1) Coding 
We take a nonnegative real number encoded by 

using a 4-dimensional nonnegative real vector as the 
individual of the population directly. For the initial 
population, a 4-dimensional nonnegative real vector of 
the specified scale is randomly generated. 

2) Individual evaluation 
For any individual in the evolutionary process, the 

fitness function can be calculated by estimating the 
compression cost at the minimum matching time point 
based on the probability of design change. Accordingly, 
the individual evaluation can be performed. Due to the 
uncertainty of the real production design process, it is 
not possible to accurately predict the time of occurrence 
and the duration of the design change in the original 
plan. The exact information can only be known after the 
incident has occurred and ended. 

Therefore, similar to the current approach of the 
design change occurring at the probability in existing 
literature research, in this paper, the expectation of 
random variables iX  and iY  is used to estimate the time 
of occurrence and the duration of the design change. 

The specific calculation method of individual 
fitness values is described as follows. 

Given a set of parameter values 
   i 1 2 3 4= , , ,      (an individual), we can 
determine the original plan following the steps above. 

First, we determine the compression task zone of 
the minimum number of tasks arranged after the 
occurrence of the design change for the estimated time 
point and duration of the design change. Then, by 
compressing the executing times, it can absorb the 
approximate duration of the design change and the time 
that the task has been processed when the interference 
occurs. 

Let minL  be the completion time of the last task in 
the task compression zone, the compression cost *F  at 
time minL  can be calculated by Formula (12). 

  a b

c ijkminC = C = hy               (12) 

  
ij

ijk ijk min 1 2

T AT

s.t. E - y = L -W -W



     

 (ii) 

  ijk ijk ijk ij0 y u E T AT   ，  
where AT is the compressed task zone, 

1W  is the 
completing time of the last task before the change 
occurs, 

2W  is the affected time of the change 
disturbance, which equals the sum of the approximate 
duration and the time that the task has been processed 
when the interference occurs. After calculating the value 
of 

minL  and *F , the two-dimensional vector  *
minL , F  

constitutes the two-dimensional space. We select the 
Positive Ideal Solution (PIS) and the Negative Ideal 
Solution (NIS) from the two-dimensional space. 

PISd  
and 

NISd  denote the Euclidean Distance of PIS and NIS 

to  *
minL , F . Thus, the fitness value of the giving 

parameter  1 2 3 4, , ,     can be calculated by 

PIS NISd / d . PIS and NIS have their own selection 
principle respectively. 

The choice of PIS should make the match-up time 
and compression costs as small as possible, such as 
 0,0 . On the contrary, the choice of NIS should make 
them as large as possible. 

3) Genetic operation 
In GA, the common operations mainly conclude 

the selecting operation, the crossing operation, and the 
mutating operation. It can keep the population update 
and ensure the excellent characteristics of the previous 
generation. The selecting operation of this study is 
based on the stochastic uniform function, the Scattered 
cross used by the crossing operation, and the mutating 
operation based on a Gaussian function. Since the 
genetic operation is not the focus of this paper, the 
details are not explained here. 

In the evolution process of the GA, if the 
termination condition is satisfied, the output the optimal 
parameter value    * * * * *

i 1 2 3 4= , , ,      in order to 
develop an original executing timetable. In addition, in 
order to explore the trade-off relationship between the 
match-up time and the compression cost (the 
compression cost will decrease correspondingly with the 
match-up time), the following operations are performed. 

For Formula (12), let minL  equal the completion 
time of the first task after the compressed task zone. 
Then, the first task is incorporated into the compressed 
task zone to recalculate the compression cost at this 
moment. This means that we can compress more tasks 
to absorb the interference of the design change in order 
to analyze the change of the compression cost at this 
time. Repeat this operation until the match-up time 
point is equal to the length of the original executing 
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timetable. Finally, we store the match-up time points 
and the corresponding compression costs at this moment. 
The specific process is shown in Figure 1. Eventually, it 
outputs a series of  *

minL , F  to reveal the relationship 
between the match-up time and the compression cost. 

Perform the genetic operators,  update the 
population

Increase Lmin and update the compressed 
task set. Recording the new (Lmin, F*) 

Terminate algorithm, calculate α*

Calculate the task priority based on {α*}, 
develop the original timetable and Lmin

Calculate yij
*

Generate the Non-negative parameters {αi} 
randomly, initialize population

Calculate the priority of task and develop 
the original executing timetable.

Select the PIS and NIS，
Individual evaluation by min:dPIS/dNIS

Meet the convergence criteria 

Lmin=D

Output all the recordings of (Lmin, F*) 

YN

Y

N

Figure 1. A flowchart of the solution procedure. 

3.3.2 Reactive Allocating for Type 2 Design 

Change 

In this paper, we consider the complete compression for 
one arrival task which means that all the compression is 
applied to the arrival task only. If an uncertain task 
arrives at VDU i , we use some (possibly extraordinary) 
mechanism (such as overtime) to get the allocation back 
on track by reducing the task executing times at an 
additional cost of ^jc  per unit of executing time 
reduction for task ^j . The compression costs in this 
condition is a linear function of compression time 

^ ^j je  . In such cases, ^ ^
l

j je  , where ^
l

je  is the 
lower bound on the minimum possible executing time of 
task ^j . Hence, the expected completion time of task 

^j  equals 
    ^ ^',max

j j
t rt   . The expected 

finishing time is again determined by 't  and  , where 
we will have either 

   _ _' t
q i q i

t r    with 

   _ _q i q i
t r   , or  _'

q i
t r  with    _ _q i q i

t r   . 

Expressing the expected cost  _q iz t  as a function 

of    _ 1q i
z t


, we have that  _q iz t  equals    _ 1q i

z t


 
added to the expected compression cost, and the unused 
idle time cost of the task ^j  , which we express using 
the function 

           

      

_ _ 1_ _ _

_ _ _

', ' 1
q i

compress

Iq iq i q i q i

q i q i q i

z t z t c

e c

  




  

 
（13） 

Ic  is the unused idle time cost per unit time, 
 _q i

c  

is the compression cost of the task per unit time. The 
function 

  _ _',
q i

compress

q i
z t   provides the expected cost of 

allocating 
 _q i
  units of the time for task 

 _q i immediately after task  _ 1q i    , when task 

 _ 1q i     has an expected finish time of 't  and 

compression is used. Given 't  and 
 _q i

r , the expected 

finish time for task  _q i of 
    _i _',max
q q i

t rt  is 

implied. We thus evaluate 
  _ _',

q i

compress

q i
z t   for all pairs 

't  and 
 _q i
  such that 

    _i _',max
q q i

t rt  . 

Based on our prior construction and discussion, 
 _q iz t  provides the minimum cost of the scheduling 

job task  _q i  with an expected finish time of t . Note 

that the value of  _q iz t  for some  _q i  and t  
combination may be infinite, which implies that no 
feasible schedule exists for job  _q i  finishing at time 
t . The optimal value of the objective function for the 
fixed sequence is then given by 

  _ _min : 0 u

q i q iZ z t t e   , where _
u

q ie  is some 
upper bound on the required time for executing all 
possible tasks. 

We next characterize the complexity of the 
dynamic programming approach. Let max  denote the 
largest executing time compression possible among all 
tasks. In the recursive equation of compression cost, if 

 _'
q i

t r , then for each t , there are  maxO  possible 

values of 
 _q i
 , and one value of 't  for each  _q i . 

Therefore,    _ 1 '
q i

z t


 is determined for each 
 _q i
 ; if 

 _'
q i

t r , then for each t , there is one value of 
 _q i
 , 

and we select the 't  that gives the lowest value of 

   _ 1 '
q i

z t


. Given a  _ ,q i t pair (a state), we require 

 maxO   operations to compute Formula (13). In each 

stage (task) there are  maxO   states. Selecting the 

lowest value of    _ 1 '
q i

z t


 requires  maxO   operations 
for each stage. Therefore, we need 

    2
max max_ _O q i q i   operations in each stage. 

There are  _O q i  stages, thus the complexity of the 

dynamic programming approach is   2 2
max_O q i  . 
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In this section, we consider the Compression to 
absorb the disruptions, as we show next. This problem 
is equivalent to a deterministic scheduling problem with 
controllable processing times.  

We assume that all the time variables and 
parameters are integral multiples of a proper unit of l. 
As before, our predictive policy schedules 

 _q i
  units of 

planned idle time, where ^ ^ ^
l

j j jee   . If a task is 
awarded, we place the task in the planned time window 
by reducing (or compressing) the processing time from 

^je  to ^j . As a result, a compression cost of 

 ^ ^ ^j j je c  is incurred for expediting the task. 
Given a predictive schedule, the expected cost and 

the objective function will be as follows: 

         

    

_ ^_ _ _ _
_i _i

_ _
_

',

1

q i

compress

jq i q i q i q i
q q

Iq i q i
q i

z t e c

c

  

 

 

 

 


 (14) 

^j  is the probability that the VDU i  will win the 
new task. In Formula (14), the first term represents the 
expected tardiness cost, the second term is the expected 
compression cost, and the third term is the expected 
unused idle time cost. Defining _ ^ ^q i j je    and 

 ^ ^ ^' j j I j Ic c c c    , the Formula (14) can be 
rewritten as 

     

   

 

_ _ ^ ^ ^ _ ^_
_i _i _

_ ^ ^ ^ ^
_i _

_ ^ ^ ^
_i _

', 1

1

' 1

q i

compress

q i j j j q i j Iq i
q q q i

q i j I j I j j I

q q i

q i j j j I

q q i

z t c e c

c c c e c

c e c

    

  

 

   

     
 

  
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        Note that the  ^ ^
_

1j j I

q i

e c  term is constant. 

We can thus, reformulate the objective function as 
_ ^

_i
'q i j

q

c . If ^' 0jc  , the optimal decision variable 

values are ^ ^
l

j je   and _ ^ ^
l

q i j je e   . If ^' 0jc  , 

^' jc  is equivalent to a compression cost, _q i  is 
equivalent to the compression time of task ^j . The 
resulting problem becomes equivalent to a deterministic 
scheduling problem that minimizes the weighted 
tardiness costs with the controllable process times. For a 
fixed sequence, this problem can be solved by an 
compress and relax algorithm proposed by Yang and 
Geunes26. 

4. Computational Study 

4.1 Reactive Allocating 

In this paper, we use the random numerical test to verify 
the effectiveness of this method. In task assignment 
problem fields, we use the conventional method to solve 
this problem. Specific design task attributes, design 
capability attributes of VDU, task classification criteria, 
and other information are described in the research of 
Cao et al.43. The literature has considered the sorting 
problem in the case of VDUs that are not available at 
some point. Some scholars have taken the stochastic 
arrival of tasks into account and asked for emergency 
processing. 

The problem has been proved to be an NP-hard 

problem and the SPT rule can minimize the expected 
time when the VDU unavailability is the exponential 
distribution. Therefore, the use of SPT to form the initial 
executing timetable is a better way to deal with the 
possible interference events. In this part, we assume that 
the losing time iX  of VDU i  and the recovery time iY  
are subject to the exponential distribution of the 
different parameters respectively. In the following, PDS 
stands for our proposed probability distribution 

sequencing, so that SPT stands for the shortest 

processing time method. A comparative analysis of the 
original allocating timetable of PDS and SPT is 
performed in this section. 

We let the size be 100n  , 5m   and 200n  , 
6m  , respectively. For the practicality of the 

verification method for the general situation, the 
residual parameters are randomly generated from a 
uniform distribution. We generated the design cost for 
each task-VDU pair randomly from Uniform  2.0,6.0 . 
For the compression function, the coefficient h  is 
randomly generated from the interval  1.0,3.0 ; ij ija b  

is randomly generated from the interval  1.1,3.1 . For 

the executing time, u

ije  is randomly generated from the 

interval  1.0,5.0 . In practice, there is a certain 
relationship between the compressible upper bound and 
the executing time, so that  0.5,0.9u u

ij ijy e  . iD  is set 
to equal to the multiplied sum of the executing times of 
all the tasks after the testing of u

ije  to avoid extreme 
cases when the available VDU capacity is too small. For 
the losing time iX , let iX  obey the exponential 
distribution of the parameter  1 0.3 iD . For the 
recovery time iY , considering the effect of the 
interference event on the results at different times. Let 
the exponential parameter be  1 iD  , where  y is 
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equal to 0.10 , 0.12 , 0.13 , and 0.15 , respectively. So 
that the expression of  dP t this time is 

     

1 1
0.3

t t
Di Di

dP t e e
 

  ,  0, it D 11. 

For PIS and NIS, let PIS be  0,0  and NIS be a 
two-dimensional vector consisting of the minimum 
match-time point and the corresponding compression 
cost in the original allocating timetable generated by 
SPT. The GA in Figure 1 is achieved by MATLAB 
7.6.0.324. The population is grouped by continuous real 
number coding and the population size is 15 . The initial 
population is randomly generated. The calibration 
function uses the Rank function to map the target 
function values of the individual to the position in the 
objective function value. This method can avoid 
fluctuations in the original target value. The selection 
operations are based on a random stochastic uniform 
function, the cross operation is a scattered cross, and the 
mutation operation is based on a Gaussian function. The 
parameters in the genetic operation are the default 
values. 

When it generates individual offspring, the number 
of elite individuals is 2 . The next generation of 
individuals from the cross product is 80% , the mutation 
product is 20% . The maximum evolutionary generation 
is used to control the output of the genetic algorithm 
with the set of the maximum evolutionary generation 
equal to 100 . The remaining parameter settings are all 
the default values. For each combination of n m   , 
we repeat 15  calculations. Each calculation generates 
an example randomly. Comparing the original 
allocating timetable of SPT and PDS to estimate the 
result interval. For 100n  , 5m  , 0.10  , and 

 dP t  is shown in Figure 2. 
From Figure 2, we can see that the maximum value 

of  dP t  is obtained in the product design cycle. 
Corresponding to the parameters in Figure 2, the 
comparison of the original executing timetable is based 
on PDS and SPT, respectively, as shown in Figure 3. 

From Figure 3, it is obvious that there is an 
offsetting-restricting relationship between the match-up 
time point and the compression cost. With the increase 
of the match-up time point, the compression cost will 
decrease. The greater the match-up time point, the 
greater the impact caused by the design change. When 
the match-up time point increases to the maximum 
completion time of the task, the compression cost is 
minimum. However, all the tasks have been affected by 
the design change at its worst case which is 
unacceptable in our design environment especially. 

As can be seen from Figure 3, the minimum match-
up time obtained by PDS is 62.45, which is better than 

88.98 obtained by SPT. The compression cost of PDS is 
lower than SPT when the minimum match-up time is 
88.98 obtained by SPT. When the match-up time is 
equal to iD , the compression cost of the two methods is 
relatively close, the cost of PDS is slightly lower. 

 
Figure 2. The production design cycle. 

 
Figure 3. The typical computing result. 

In order to further quantify the effectiveness of our 
approach, several indexes are used to measure the 
results of multiple experiments and the PDS is 
compared with the SPT. The indicators involved and 
their meanings are describedas follows.  

The number (NUM) of match-up time points is 
selected by the decision maker. For SPT, it is the 
number of two-dimensional vectors  *

minL , F  that are 
finally output by the algorithm flow shown in Figure 1. 
For SPT, similar to the flowchart in Figure 1, after 
obtaining the minimum match-up time point, we 
increased the point successively when the corresponding 
compression cost is calculated until the match-up time 
point is equal to the length of the original allocating 
timetable. In short, the greater the number is, the more 
the room for decision-makers to choose. 

The minimum match-up time (MMT) and the 

average match-up time (AMT) are the optimal value and 
the mean value of the match-up time points, 
respectively, which is the core point that the decision 
maker should pay attention to in the design process. The 
bigger the point is, the more external activities that 
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depend on the original allocating timetable, such as 
resource configuration, the next processing arrangement 
of the task, and so on. 

The cost at the same time (CAT) indicates the 
respective compression cost of the PDS and SPT at the 
minimum match-up time point obtained by SPT. This 
indicator considers the problem from the point of view 
of comparing the cost of different methods at the same 
match-up time point. 

The Minimum cost (MC) and the Average cost (AC) 

correspond to the MMT and AMT and reflect the 

increasing minimum cost and the average cost to restore 
to the original allocating timetable. 

Robustness is an emphasized objective so that it 
recovers to the original allocating timetable and is 
required after the occurrence of the design change. 
Therefore, MMT and AMT are of the utmost importance 
of the above indicators. 

Table 1 shows the average value of 15 tests for 
each parameter combination. Table 2 provides an 
interval estimate of the average improvement rate for 
the 15 tests with respect to SPT in terms of the number, 
MMT, AMT, and so on. 

Table 1. A comparison of the absolute metric values of PDS and SPT. 

Index  Type Method 
n = 100, m = 3,   n = 200, m = 6,   

0.10 0.12 0.13 0.15 0.10 0.12 0.13 0.15 
NUM max PDS 32.73 29.87 28.33 25.33 65.00 61.07 57.47 41.07 

  SPT 11.07 8.47 7.73 6.33 18.80 16.73 13.67 11.60 
MMT min PDS 65.20 65.76 75.39 79.95 124.31 132.97 139.97 168.28 

  SPT 92.70 95.16 100.31 100.90 184.69 194.04 199.44 207.78 
AMT min PDS 92.45 90.67 97.47 98.23 178.21 184.98 187.42 203.31 

  SPT 106.79 106.01 110.23 108.90 208.91 216.50 218.28 223.72 
CAT min PDS 18.2 24.84 28.41 37.39 28.28 45.99 46.31 69.36 

  SPT 29.97 32.64 46.44 54.88 51.39 75.52 82.49 103.72 
MC min PDS 26.03 40.15 36.64 46.76 42.59 71.73 70.28 86.25 

  SPT 16.48 20.83 30.07 38.85 29.07 43.94 51.55 70.49 
AC min PDS 10.52 15.85 21.14 31.40 17.32 28.46 32.22 53.44 

  SPT 9.75 14.14 20.64 28.83 17.54 28.44 35.19 51.52 

Table 2. The 95% CI estimates of the improvement on the critical metrics of our method. 
n Index  0 10.   0 12.   0 13.   0 15.   

   Lower Upper Lower Upper Lower Upper Lower Upper 
100 NUM  1.61 2.68 2.11 3.52 1.87 3.60 2.15 3.93 

 MMT  –
0.33 

–
0.26 

–
0.33 

–
0.28 

–
0.32 

–
0.18 

–
0.27 

–
0.14 

 AMT  –
0.15 

–
0.12 

–
0.16 

–
0.13 

–
0.15 

–
0.08 

–
0.13 

–
0.07 

 CAT  –
0.47 

–
0.29 

–
0.35 

–
0.07 

–
0.47 

–
0.25 

–
0.39 

–
0.25 

200 NUM  2.23 2.78 2.39 3.05 2.81 3.95 1.89 3.20 

 MMT  –
0.34 

–
0.31 

–
0.33 

–
0.29 

–
0.31 

–
0.29 

–
0.24 

–
0.14 

 AMT  –
0.15 

–
0.14 

–
0.16 

–
0.13 

–
0.15 

–
0.13 

–
0.11 

–
0.07 

 CAT  –
0.51 

–
0.38 

–
0.43 

–
0.33 

–
0.47 

–
0.40 

–
0.39 

–
0.23 

Data in Table 1 and Table 2 retain two decimal 
places. In this paper, a confidence level of 95% is used 
to estimate the confidence interval. For a certain index, 
the improvement rate is calculated as follows. 

 PDS SPT

SPT

V V

V

                         (15) 

where 
PDSV  and 

SPTV  represent the specific values of the 
two methods, respectively. As can be seen from Table 1, 
first of all, PDS can provide more choices for decision-
making than SPT does, so that decision-makers can 
choose the time points as early as possible. 

In addition, MMT and AMT of PDS are smaller 
than the corresponding items of SPT, indicating that the 
original allocating timetable given in this section is 
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subject to interference events during the executing 
phase and can restore the system plan as early as 
possible. This can effectively reduce the impact of 
design change. Although AC of PDS is higher, the 
earlier match-up time points in the design process can 
reduce the larger losses caused by the design change. 
Finally, the same cost indicator in the vicinity of the 
MMT shows that the compression cost of PDS is lower 
than SPT. In this paper, PDS can significantly reduce 
the match-up time after the occurrence of the design 
change and improve the selectable range of the decision, 
and the compression cost can be significantly reduced 
by SPT in the vicinity of the MMT. Therefore, PDS 
gives priority to the compression time while taking the 
compression costs into account.  

In summary, PDS constitutes an original allocating 
timetable relative to SPT, which can be more effective 
in coping with the design cost, and the design system 
can be restored to the original plan as soon as possible. 

4.2 Reactive Allocating 

It is worth mentioning that the size of experiment and 
some parameters have been determined by the proposed 
method based on data verification. To simplify this 
problem, the inserting idle time is based on the sequence 
has been identified by PDS. 

Table 3 summarizes the experimental conditions. 
0.12   shows its advantage in section 4.1. Therefore, 
0.12   is chosen as a fixed parameter in the 

exponential distribution of random unavailability. The 
new tasks are assigned to VDUs according to their 
attributes of design capacity, and then the position and 

the idle time for the new tasks are determined within 
their probability distribution. 

The most popular predictive approach in the 
project management and machine scheduling literature 
is to leave the idle times (time buffers) in schedules in 
coping with disruptions. The quality of the proposed 
method PDS+IIT is compared with the SM(  ) 

reference of Yang and Geunes26. 
PDS+IIT+ CETS: here, we generate the predictive 

allocation by the proposed PDS +IIT, CETS as the 
reactive policy. 

The SPT+SM( )+CETS: SPT + SM( ) policy is 
used to generate the predictive allocation, CETS is for 
the reactive policy. 

 The SM( ) policy is used to generate an effective 
allocation to provide a good solution using the SM 

method (SM is a basic and effective heuristic method 
developed by Rachamadugu and Morton44), and then   
units of idle time for the tasks are inserted at some point 
in the allocation (both the amount of planned idle time 
and the insertion position are decision variables), where 
  is integer.  

Table 4 and Table 5 show the performance 
comparison between the proposed method PDS +IIT+ 

CETS and the other method SPD+SM(  )+CETS. 
0.12   is a fixed index in the exponential distribution 

of the unavailability of VDU. Therefore, the 
computational experiments are performed to compare 
the two methods. A quantity of six new task arrivals (10, 
20, 40, 60, 80, 100) forms the first factor. It is grouped 
into three types of new task arrivals (small: 10, 20; 
medium: 40, 60; and large: 80, 100). Two task arrivals 
are rated  ; namely, the sparse and dense task arrivals 
are considered (sparse: 0.125, 0.25; dense: 0.5, 1). 

Table 3. The experimental conditions. 
Dimension Characteristic Specification 
 Size n = 200, m = 6, 0 12.   

CPD process  

Tasks arrival rate [0.125, 0.25, 0.5, 1] 
The number of new tasks [10, 20, 40, 60, 80, 100] 
Task release policy Immediate 
Random arrival  Passion distribution 
Random unavailability Exponential distribution 
Executing time of a design task [1, 10] 

Performance measures 

Makespan  
Stability  
Robustness  
Compression cost  
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Table 4. The performance measures of the two methods with sparse task arrivals. 
Policy/performance 

 /Scale 
PDS +IIT+ CETS SPD+SM( )+CETS 

Ma. St. Ru. Co. Ma. St. Ru. Co. 

  

0.125 

S 10 156.23 47.23 102.44 23.44 174.63 53.63 102.44 33.65 
20 171.44 55.20 113.36 26.58 188.36 64.38 113.36 39.59 

M 40 195.26 60.58 126.32 29.36 214.63 71.26 132.25 42.36 
60 213.32 71.15 134.55 33.56 245.29 80.65 142.85 48.56 

L 80 241.85 84.62 145.36 39.64 266.86 86.59 151.36 52.57 
100 263.16 92.37 156.39 49.63 285.64 98.47 163.25 56.93 

0.25 

S 10 164.54 52.36 109.52 34.26 186.78 60.12 109.52 36.85 
20 181.23 59.38 116.32 41.28 204.63 69.25 116.32 44.56 

M 40 214.59 68.94 125.68 49.29 224.69 71.36 125.68 51.96 
60 245.93 79.53 133.27 54.31 259.36 86.34 139.56 58.39 

L 80 266.51 89.64 145.69 61.88 286.61 94.28 159.98 69.65 
100 287.75 104.35 163.52 71.36 298.64 109.88 170.25 74.44 

 

Table 5. The performance measures of the two methods with dense task arrivals. 
Policy/performance 

 /Scale 

PDS +IIT+CETS SPD+SM( )+CETS 

Ma. St. Ru. Co. Ma. St. Ru. Co. 

  

0.5 

S 10 165.59 47.23 102.44 29.36 187.36 55.36 102.44 35.62 
20 178.86 55.20 113.36 34.89 196.36 69.14 116.32 42.58 

M 40 201.85 60.58 135.25 46.52 209.36 72.36 142.36 49.62 
60 211.96 76.15 146.93 57.65 230.86 81.36 153.96 56.32 

L 80 218.74 94.62 156.39 68.22 252.54 91.20 164.85 64.21 
100 223.61 106.37 166.84 78.12 271.95 100.92 171.94 75.25 

1 

S 10 192.54 52.36 109.52 34.98 195.36 58.56 109.52 38.65 
20 224.82 70.38 116.32 46.10 230.36 72.85 121.63 44.21 

M 40 251.76 81.94 146.85 57.74 259.36 80.64 155.93 57.21 
60 276.16 95.53 153.85 65.66 281.69 93.85 163.86 63.21 

L 80 283.39 107.64 162.55 77.33 293.53 101.22 171.22 74.64 
100 301.58 116.35 176.89 86.96 310.26 108.34 186.57 84.12 

Ma. : Makespan; St. : Stability (deviation); Ru. : Rubust (Minimum Match-up time); Co. : Compression cost 

The results in Table 4 and 5 indicate that the 
proposed method PDS +IIT+CETS outperforms 
SPD+SM(  )+CETS from the four measures in most 
experimental data. It is more capable of achieving the 
optimal solutions for most case studies. In the 
experiment with sparse task arrivals, the proposed 
method PDS +IIT+CETS performs with the absolute 
advantage on all of the measures. 

When the reactive conditions are more complex 
(the value setting of the task arrival rate and the quantity 
of new tasks becomes bigger), a reversal appears in 
some performance. This is obvious in the experiments 
with dense task arrivals. When the value of   is equal 
to 1, the quantity is greater than 20, the stability and 
compression cost of SPT+SM(  )+CETS are greater 
than PDS +IIT+CETS. This indicates that once there 
exists a more complicated disruption, a predictive 
inserting idle time method for all the tasks is a more 
effective way than the proposed method. Minimizing 
the insertion of the idle time is an effective method to 
improve the resource utilization with sparse task arrivals. 

However, in the condition of dense task arrivals, it 
becomes more difficult to control the compression cost 
and the stability.  

The results also indicate that the proposed method 
performs well for different parameter settings. It can be 
observed from the table that it requires more 
compression time to absorb the disruptions as the 
number of tasks increase. As expected, as the length of 
the disruption is increased, the proposed method tends 
to generate a better solution for the match-up time 
problem. 

In this section, we have shown that we can 
efficiently solve match-up rescheduling problems with a 
controllable executing time exactly by using recently 
developed reformulation techniques and commercial 
solvers. It is observed that the heuristic algorithm is able 
to generate a good approximation of the efficient 
frontier of match-up time and compression cost quickly.  
When the quantity of new tasks is consistent, the 
influence on allocation is positively associated with the 
arrival rate. Similarly, when the quantity is given, the 
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influence is positively associated with the arrival rate as 
well. The ambiguity in the description of the 
coordination cost and the different measurements are 
the main influencing factors for decision-makers. In the 
real-world design process, the objectives for 
practitioners are different. Some concentrate on the 
design cost, some focus on time, and some think of the 
stability, robustness, or even the balance between them. 
Therefore, the four performances provide a reference for 
decision-makers to make a scientific and rational 
decision considering their individual situation. 

5. Conclusions 

In this paper, a robust predictive–reactive allocating 
approach is proposed with controllable executing times. 
The design change is considered in preparation for the 
original predictive allocation with anticipative 
probability distributions. We showed that the predictive 
decision making in preparing original allocations can 
avoid excessive reallocating costs resulted by reactive 
executing time adjustments and this ensured the strong 
robustness and stability of the design system. 

In the phase of predictive allocating, the 
probability of the design change is utilized to generate 
the combinatorial approach with PDS and IIT. In PDS, 
we estimate which task can absorb a possible 
interference with the lowest cost, then determine the 
task sequence on each VDU. Based on sequence, the IIT 
policy is used to respond to task arrivals. This effective 
combination of PDS and IIT can absorb almost all of the 
interference impact caused by the design change. Four 
measurements, which are Cmax, stability, robustness, 
and compression cost, are adopted in this paper to 
mirror the quality of the proposed approach. The 
application of combinatorial optimization is tested and 
verified by a computational simulation. The results of 
comparing two methods within the different setting of 
the parameters show its effectiveness. Two factors, 
which are the task arrival rate and the quantity of the 
task arrival, and their interactions are analyzed in 
section 4 to indicate the interference impact caused by 
the design change. 

While the findings of this study improve our 
understanding of the task allocations in the complex 
product design process, its limitations should also be 
recognized. First, in this paper, we suppose that the 
design change obeys some certain distributions. 
However, in the real design process, the appearance of 

design change is more complex and difficult to predict. 
Second, the scale and complexity of the hypothetical 
design change in this paper are not fully considered. 
Lastly, the compressing character in this paper assumes 
that all the execution objects accept this adjustment and 
act in concert with other departments. The situation that 
some execution objects may not want to change their 
work is also not our research focus. 

Therefore, in order to further improve our 
research, further research would be definitely called for. 
First, as this paper only consider the exponential 
distribution for VDU unavailability, it may be 
interesting to consider the different combination of 
Normal-Normal, Triangular-Normal, Exponential-
Normal, Exponential-Exponential distributions, and so 
on. Second, it will be interesting to consider the scale 
and complexity of the design change to improve the 
accuracy of the predictive phase. Finally, in the further 
research, the different changing will of the execution 
objects should be considered to better reflect the design 
process and enhance the quality of the findings. 
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