
A model-reference impedance control of robot manipulators using an adaptive fuzzy 

uncertainty estimator 

Gholamreza Nazmara1, Mohammad Mehdi Fateh1, Seyed Mohammad Ahmadi1* 

1Department of Electrical and robotic engineering, Shahrood University of Technology, Shahrood, Iran,  

E-mail: rezanazmara89@gmail.com 

1Department of Electrical and robotic engineering, Shahrood University of Technology, Shahrood, Iran,  

E-mail: mmfateh@shahroodut.ac.ir 

1Department of Electrical and robotic engineering, Shahrood University of Technology, Shahrood, Iran,  

E-mail: s.m.ahmadi1365@gmail.com 

 

 

Abstract

 

This paper aims at developing a voltage -based impedance model-reference controller using fuzzy uncertainty 
estimator for the robust control of electrically driven robot manipulators. The proposed control scheme not only 
utilizes a desired impedance as a reference model, but also provides the integrated control of position and force in the 
closed loop system. The robotic system receives the output of model-reference as a desired trajectory and thus the 
aim of the controller is to reduce the difference between the task-space desired trajectory and the desired impedance 
model. Furthermore, two control terms namely a robustifying term and a fuzzy uncertainty estimator are added in the 
structure of control design in order to improve the performance of the control system as well as to tackle uncertainty 
including un-modelled dynamics and external disturbances. Using stability analysis, we derive the adaptive 
mechanisms and also prove the boundedness of all system states. Finally, simulation results are included to verify the 
proposed control method.
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1. Introduction 

Many researchers have focused attention on designing 
force control schemes for robot manipulators in the past 
decades. As an end-effector of robot manipulators 
interacts with an environment, the existing contact force 
must be regulated to protect the end-effector and 
environment against serious damages. To solve this 
problem, the hybrid position/force control approaches [1-
2] have been proposed to guarantee a smooth transition 
from position control to force control. However, the 
formulation of hybrid position/force control cannot be 
easily achieved. Also, many of these control schemes 
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require the exact kinematics and dynamics of robotic 
system; hence, an adaptive Jacobian position/force 
control [3] has been developed which does not require all 
the knowledge of the robot manipulator. 

In order to provide a unified solution of the position 
and force control, the impedance control schemes [4-6] 
have been developed for robot manipulators. An 
impedance model is designed to describe the dynamic 
behavior of a robotic system when interacting with the 
environment. It is worth noting that impedance control 
methods are strongly affected by the uncertainty 
associated with the nonlinear dynamics of highly coupled 
robotic systems, unknown environments and external 
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disturbances [7]. Therefore, the performance of control 
system is dependent on how well the uncertainty can be 
compensated [8]. Adaptive impedance controllers [9], 
robust impedance controller [10], learning impedance 
control [11] and force tracking impedance control [12] 
have been developed to tackle uncertainty. It should be 
emphasized that the majority of impedance controllers 
are based on torque control strategy such that the 
proposed control laws require the dynamics of robot 
manipulator and also the role of robot's motors is 
excluded from the control problem.  

To consider the whole robotic system including robot 
manipulator and motors, a regressor-based variable-
structure controller [13], the min-max scheme [14] and a 
generalized impedance controller [15] have been 
proposed. By using the voltage control strategy [16-17], 
the impedance control of electrically driven robots has 
been proposed [18]. The main idea behind the voltage 
control strategy comes from the fact that the manipulator 
dynamics can be taken into account indirectly as 
measuring the motor currents.  

An adaptive impedance control of human-robot 
cooperation [19] has been developed. In this control 
method, linear quadratic regulation has been formulated 
to minimize tracking errors and to obtain an optimal 
impedance mode of human. An adaptive neural 
impedance controller [20] for robot manipulators has 
been proposed by considering uncertainty and input 
saturation. An adaptive control method [21] has been 
designed for tracking purpose of uncertain robotics in 
order to compensate parametric uncertainties, un-
modelled dynamics and external force disturbances 
without a priori knowledge about upper bound of 
uncertainty. An adaptive fuzzy neural network force 
approach [22], robust neural network [23] and robust 
adaptive neuro-fuzzy controller [24] for hybrid 
position/force control of robot manipulators have been 
developed, which interacts with unknown environment. 
A PID-fuzzy controller was developed to deal with the 
nonlinear contact force control problem [25]. 

This paper presents a voltage-based model-reference 
impedance control approach using a fuzzy uncertainty 
estimator for the electrically driven robot manipulators. 
In the proposed control scheme, a desired impedance is 
used as a model-reference in such a way that this model-
reference could provide a reference signal for a robot in 
both tracking and contact situations. As the interaction 
between an end-effector and an environment occurs, the 

contact force is exerted to the model-reference and the 
robotic system receives the output of model-reference as 
a desired trajectory and thus the aim of the controller is 
to reduce the difference between the task-space desired 
trajectory and the desired impedance model. In order to 
tackle difficulties in the analysis of the motion equation 
in task-space, a specific transformation is used and a 
pertinent controller is designed in the joint-space. 
Furthermore, two control terms namely, a robustifying 
term and a fuzzy uncertainty estimator are employed in 
the proposed controller: (i) to improve the performance 
of control system; (ii) to compensate un-modelled 
dynamics and external disturbances. 

In the remainder of this paper, the robotic problem 
formulation is discussed in Section 2. In section 3, fuzzy 
uncertainty estimation is introduced. Section 4 develops 
the impedance design. The proposed robust control 
approach and the stability analysis of the control system 
are developed in section 5. Section 6 illustrates the 
corresponding simulations to validate the theoretical 
results. Finally, Section 7 concludes the paper. 

2. Problem Formulation 

The dynamics of a robotic system which is in contact 
with a frictionless rigid environment consist of n links 
interconnected at n joints into an open kinematic chain of 
rigid links and the geared permanent magnet dc motors 
are described as [26] 

 𝑫(𝒒)𝒒̈ + 𝑪(𝒒, 𝒒̇)𝒒̇ + 𝑮(𝒒) + 𝑱𝑇𝑭𝑒 = 𝝉𝑟  (1) 

 𝑱𝑚𝒓−1𝒒̈ + 𝑩𝑚𝒓−1𝒒̇ + 𝒓𝝉𝑟 = 𝑲𝑚𝑰𝑎 (2) 

 𝒗 = 𝑹𝑰𝑎 + 𝑳𝑰̇𝑎 + 𝒌𝑏𝒓−1𝒒̇ + 𝝋(𝑡) (3) 

where 𝒒 ∈ 𝑅𝑛 denotes the joint coordinates and is the 
vector of joint positions, 𝑫(𝒒) ∈ 𝑅𝑛×𝑛 is the inertia 
matrix, 𝑪(𝒒, 𝒒̇)𝒒̇ ∈ 𝑅𝑛 the vector of centrifugal and 
Coriolis torques, 𝑮(𝒒) ∈ 𝑅𝑛 the vector of gravitational 
torques, 𝑭𝑒 ∈ 𝑅𝑚 the contact forces vector, 𝝉𝑟 ∈ 𝑅𝑛  the 
input torque vector of robot manipulator. 𝑱𝑚, 𝑩𝑚 and 𝒓 
are the 𝑛 × 𝑛 diagonal matrices for motor coefficients 
namely the actuator inertia, damping, and reduction gear, 
respectively. 𝑲𝑚 ∈ 𝑅𝑛×𝑛 is a diagonal matrix of the 
torque constants, 𝑰𝑎 ∈ 𝑅𝑛  is the vector of motor currents, 
𝒗 ∈ 𝑅𝑛 is the vector of motor voltages and 𝝋(𝑡) ∈ 𝑅𝑛 is 
a vector of external disturbances. 𝑹, 𝑳 and 𝑲𝑏 represent 
the 𝑛 × 𝑛 diagonal matrices for the coefficients of 
armature resistance, inductance, and back-emf constant 
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respectively. 𝑱(𝒒) ∈ 𝑅𝑚×𝑛 is the Jacobian matrix of the 
robot arms, which converts the joint space to the task 
space as 

 𝒙̇ = 𝑱(𝒒)𝒒̇ (4) 

where 𝒙 ∈ 𝑅𝑚 is the vector which determines the 
position of the end-effector. The time derivative of 
equation (4) can be written as 

 𝒙̈ = 𝑱̇(𝒒)𝒒̇ + 𝑱(𝒒)𝒒̈ (5) 

We consider that 𝑚 = 𝑛 and the robot trajectory is 
never in a singular configuration, i.e., the inverse of the 
Jacobian matrix always exists. Note that vectors and 
matrices are represented in bold form for clarity. By 
considering (1)-(3), one can present the state-space 
model as 

 𝒛̇ = 𝒇(𝒛) + 𝒃𝒗 − 𝒃𝝋(𝑡) (6) 

where 𝒗 is considered as the inputs, 𝒛 is the state vector 
and 𝒇(𝒛) is of the form 

 𝒇(𝒛) = [

𝒛2

(𝑱𝑚𝒓−1 + 𝒓𝑫(𝒛1))
−1

𝑾

−𝑳−1(𝑲𝑏𝒓−1𝒛2 + 𝑹𝒛3)

] (7) 

in which, 

 
𝑾 = −(𝑩𝑚𝒓−1 + 𝒓𝑪(𝒛1, 𝒛2))𝒛2 −

𝒓𝒈(𝒛1) + 𝑲𝑚𝒛3 − 𝒓𝑱𝑇𝑭𝑒

 (8) 

 𝒃 = [
0
0

𝑳−1
]  ,   𝒛 = [

𝒒
𝒒̇
𝑰𝑎

]   

A highly coupled nonlinear system in a  
non-companion form is shown by the aforementioned 
state-space equation. 

3. Fuzzy Uncertainty Estimation 

One can represent the voltage equation (3) as 

 𝒗 = 𝑹𝑰𝑎 + 𝒌𝑏𝒓−1𝒒̇ + 𝝁(𝑡) (9) 

in which 𝝁(𝑡) denotes the uncertainty in form of 

 𝝁 = 𝑳𝑰̇𝑎 + 𝝋(𝑡) (10) 

where 𝑳𝑰̇𝑎 and 𝝋(𝑡) are expressed as un-modeled 
dynamics and external disturbances respectively. By 
considering (9), uncertainty can be represented in scalar 
form as 

 𝝁𝑖 = 𝒗𝑖(𝑡) − 𝑹𝑖𝑰𝑖𝑎 − 𝒌𝑖𝑏𝒓𝑖
−1𝒒̇𝑖 (11) 

In order to estimate 𝝁𝑖, the fuzzy estimator is 
employed. The motor current 𝑰𝑖𝑎 and the joint velocity 
𝒒̇𝑖   and 𝒗𝑖(𝑡 − 𝜀) are considered as inputs of fuzzy 
system. To estimate the uncertainty, 𝒗𝑖(𝑡) is not 
available. Instead, 𝒗𝑖(𝑡 − 𝜀), which is the past 
information of 𝒗𝑖(𝑡), is given as the input of the fuzzy 
system, where 𝜀 is the time delay. By allocating three 
membership functions named as Positive (P), Zero (Z) 
and Negative (N) to each fuzzy input, 27 fuzzy rules will 
cover the whole space. The linguistic rules of fuzzy are 
utilized in the Mamdani type as  

𝑅𝑢𝑙𝑒 𝑙:  𝐼𝑓  𝑰𝑖𝑎   𝑖𝑠 𝐴𝑙 ,   𝒒̇𝑖  𝑖𝑠 𝐵𝑙    𝑎𝑛𝑑 𝒗𝑖(𝑡 −
𝜀) 𝑖𝑠 𝐶𝑙   𝑇ℎ𝑒𝑛    𝝁̂𝑖  𝑖𝑠 𝐷𝑙   (12) 

where 𝑅𝑢𝑙𝑒 𝑙 represents the 𝑙-th fuzzy rule for 
𝑙 = 1, … ,27, fuzzy membership functions 𝐴𝑙, 𝐵𝑙  , 𝐶𝑙 and 
𝐷𝑙  belong to the fuzzy variables 𝑰𝑖𝑎, 𝒒̇𝑖, 𝒗𝑖(𝑡 − 𝜀) and 𝝁̂𝑖, 
respectively. The membership functions for input 𝑰𝑖𝑎 are 
given as follows 

 𝜇𝑃(𝑰𝑖𝑎) = 𝑒(−(𝑰𝑖𝑎−1)2/2𝜎𝑓
2) (13) 

 𝜇𝑍(𝑰𝑖𝑎) = 𝑒(−𝑰𝑖𝑎
2 /2𝜎𝑓

2) (14) 

 𝜇𝑁(𝑰𝑖𝑎) = 𝑒(−(𝑰𝑖𝑎+1)2/2𝜎𝑓
2) (15) 

The membership functions for inputs 𝒒̇𝑖 and 
𝒗𝑖(𝑡 − 𝜀) are chosen as the same of 𝑰𝑖𝑎. Also, 27 
symmetric Gaussian membership functions are defined 
for the output 𝝁̂𝑖 in the form of 

 𝜇𝐷𝑙
(𝝁̂𝑖) = 𝑒(−(𝝁̂𝑖−𝝍̂𝑖𝑙)

2
/0.55) (16) 

where 𝝍̂𝑖𝑙 is the center of fuzzy membership function 𝐷𝑙 . 
In this paper, 𝝍̂𝑖𝑙 is adjusted by an adaptive law derived 
by the stability analysis. Using the product inference 
engine, singleton fuzzifier, center average defuzzifier and 
Gaussian membership functions [27], we select the fuzzy 
system for 𝝁̂𝑖 as follows 

 𝝁̂𝑖   =
∑ 𝜇𝐴𝑙

(𝑰𝑖𝑎)𝜇𝐵𝑙
(𝒒̇𝑖)𝜇𝐶𝑙

(𝒗𝑖(𝑡−𝜀))𝝍̂𝑖𝑙
27
𝑙=1

∑ 𝜇𝐴𝑙
(𝑰𝑖𝑎)𝜇𝐵𝑙

(𝒒̇𝑖)27
𝑙=1 𝜇𝐶𝑙

(𝒗𝑖(𝑡−𝜀))
 (17) 

One can easily denote (17) of the form 

 𝝁̂𝑖  = ∑ 𝒀𝑖𝑚𝑙𝝍̂𝑖𝑙
27
𝑙=1 = 𝒀𝑖𝑚𝝍̂𝑖 (18) 

in which 𝒀𝑖𝑚 = [𝒀𝑖𝑚1, … , 𝒀𝑖𝑚27] is a positive regressive 
vector defined as  

 𝒀𝑖𝑚𝑙 =
𝜇𝐴𝑙

(𝑰𝑖𝑎)𝜇𝐵𝑙
(𝒒̇𝑖)𝜇𝐶𝑙

(𝒗𝑖(𝑡−𝜀))

∑ 𝜇𝐴𝑙
(𝑰𝑖𝑎)𝜇𝐵𝑙

(𝒒̇𝑖)27
𝑙=1 𝜇𝐶𝑙

(𝒗𝑖(𝑡−𝜀))
 (19) 

And 𝝍̂𝑖 is an adaptive gain vector of the form 

 
___________________________________________________________________________________________________________

981

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 979–990



 

 

 𝝍̂𝑖 = [𝝍̂𝑖1, … , 𝝍̂𝑖27]
𝑇
 (20) 

4. Impedance Design 

The contact forces vector, 𝑭𝑒, can be presented as 

 𝑴𝑒𝒙̈ + 𝑩𝑒𝒙̇ + 𝑲𝑒(𝒙 − 𝒙𝑒) = 𝑭𝑒 (21) 

where  𝑴𝑒 ∈ 𝑅𝑚×𝑚, 𝑩𝑒 ∈ 𝑅𝑚×𝑚 and 𝑲𝑒 ∈ 𝑅𝑚×𝑚 are 
represented the inertia, damping and stiffness of the 
environment involved in contact and 𝒙𝑒 ∈ 𝑅𝑚 is the 
environment equilibrium position in the absence of the 
contact force. One can take the Laplace transform from 
both sides of equation (21) to yield 

 𝑠𝒁𝑒(𝑠)𝒙(𝑠) − 𝒌𝑒𝒙𝑒(𝑠) = 𝑭𝑒(𝑠) (22) 

in which 𝒁𝑒(𝑠) is defined as 

 𝒁𝑒(𝑠) = 𝑴𝑒𝑠 + 𝑩𝑒 +
𝑲𝑒

𝑠
 (23) 

In contact with the environment, which is a primary 
goal for impedance control of robotic system, a desired 
dynamical behavior is defined in Laplace form as  

 𝑠𝒁𝑅(𝑠)(𝒙𝑑(𝑠) − 𝒙𝑚(𝑠)) = 𝑭𝑒(𝑠) (24) 

where 𝒙𝑑 is the desired trajectory in task-space, 𝒙𝑚 is the 
output of reference model and 𝒁𝑅(𝑠) is a desired 
impedance given as follows 

 𝒁𝑅(𝑠) = 𝑴𝑅𝑠 + 𝑩𝑅 +
𝑲𝑅

𝑠
 (25) 

where 𝑴𝑅, 𝑩𝑅 and 𝑲𝑅 represent the diagonal 𝑛 × 𝑛 
inertia, damping and stiffness of the reference model 
matrices, respectively. Using (25), equation (24) can be 
rewritten in scalar form as  

(𝑴𝑅𝑖𝑠2 + 𝑩𝑅𝑖𝑠 + 𝑲𝑅𝑖)(𝒙𝑑𝑖(𝑠) − 𝒙𝑚𝑖(𝑠)) = 𝑭𝑒𝑖(𝑠) (26) 

Remark 1. If a robot has no contact with an 
environment, i.e. 𝑭𝑒𝑖 = 0, one can choose proper values 
for 𝑴𝑅𝑖, 𝑩𝑅𝑖  and 𝑲𝑅𝑖 such that all roots of polynomial 
𝑑(𝑠) ≜ 𝑴𝑅𝑖𝑠

2 + 𝑩𝑅𝑖𝑠 + 𝑲𝑅𝑖 are in the open left- half of 
complex plane, i.e. strictly Hurwitz. Thus, as 𝑡 → ∞, 
𝒙𝑚𝑖 → 𝒙𝑑𝑖. This means that the impedance controller 
behaves as a pure position control (e.g. a path planning 
problem using the feedback-based compositional rule of 
inference [28] and a Taylor series tracking control [29]). 

Remark 2.  If a robotic system interacts with an 
environment, i.e. 𝑭𝑒𝑖 ≠ 0, there exists a difference 
between 𝒙𝑚𝑖  and 𝒙𝑑𝑖  and thus the existing contact force 
is regulated to protect robot and environment against 
serious damages. 

Remark 3. As a result, the impedance control is 
designed in such a way that the output of the system 
follows the output of the reference model (i.e. 𝒙 → 𝒙𝑚). 
It is worth noting that in order to protect both the robot 
and the environment, the desired tracking deviation 
occurs since the reference model performs like a desired 
dynamical behavior of robotic system in contact with the 
environment. 

5. Robust Control Design and Stability Analysis 

In section 5, our control objective is to propose an 
impedance model-reference controller to reduce the 
difference between the task-space desired trajectory and 
the desired impedance model. The proposed controller is 
equipped with fuzzy estimator in order to be robust 
against the uncertainty including un-modelled dynamics 
and external disturbances as well as a robustifying term 
to improve the performance of controller. The block 
diagram of control system is shown in Fig.1. 

 
The dynamic equation of electrically driven robot 

manipulators in task-space can be obtained by 
substituting equation (1) to (2) and using equations (4), 
and (5) and (9) as follows 

 𝑫𝑥𝒙̈ + 𝑪𝑥𝒙̇ + 𝑮𝑥 + 𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒 = 𝒗 − 𝝁 (27) 

where 𝑫𝑥 , 𝑪𝑥  and 𝑮𝑥 are given as 

 𝑫𝑥 = 𝑹𝒌𝑚
−1(𝑱𝑚𝒓−1 + 𝒓𝑫(𝒒))𝑱−1 (28) 

𝑪𝑥 = 𝑹𝒌𝑚
−1(𝑩𝑚𝒓−1 + 𝒓𝑪(𝒒, 𝒒̇) + 𝒌𝑚𝑹−1𝒌𝑏𝒓−1 −

(𝑱𝑚𝒓−1 + 𝒓𝑫(𝒒))𝑱−1𝑱̇)𝑱−1  (29) 

 𝑮𝑥 = 𝑹𝒌𝑚
−1𝒓𝑮(𝒒) (30) 

Some properties of the dynamic equation of 
electrically driven robot manipulators (Eq. 27) can be 
expressed as follows [26]: 

Property 1: The matrix 𝑫𝑥 is a symmetric positive 
definite matrix for all 𝒙 ∈ 𝑅𝑚 . 

Property 2: The skew-symmetric properties is 
preserved for 𝑫̇𝑥 − 2𝑪𝑥 so that 

 𝒘𝑇𝑫̇𝑥𝒘 = 2𝒘𝑇𝑪𝑥𝒘,     ∀ 𝒘 ∈ 𝑅𝑚  (31) 

Property 3: The task-space dynamic equation can 
also be linearly parameterized with using a suitable 
selected parameter vector 𝑷̅ and a known regression 
matrix 𝒀̅(𝒙, 𝒙̇, 𝒙̈), i.e. 

𝑫𝑥𝒙̈ + 𝑪𝑥𝒙̇ + 𝑮𝑥 = 𝒀̅(𝒙, 𝒙̇, 𝒙̈)𝑷̅          (32) 
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Let us define the error dynamics as 

 𝚵 = 𝒆̇ + 𝒌1𝒆 (33) 

in which 𝒌1 is the 𝑛 × 𝑛 constant positive definite matrix 
and 𝒆 is the reference error which is the difference 
between the output of the closed loop system and the 
reference model output expressed by 

 𝒆 = 𝒙 − 𝒙𝑚 (34) 

Consider a following positive definite function as  

𝑉 =
1

2
𝚵𝑇𝑫𝑥𝚵 +

1

2
(𝑷̂ − 𝑷)

𝑇
𝚪−1(𝑷̂ − 𝑷) +

1

2𝛾𝜂
(𝜂̂ −

𝜂)2 +
1

2𝛾𝑓
(𝝍̂ − 𝝍)

𝑇
(𝝍̂ − 𝝍) (35) 

Taking the time derivative of  𝑉 gives that 

𝑉̇ = 𝚵𝑇𝑫𝑥𝚵̇ +
1

2
𝚵𝑇𝑫̇𝑥𝚵 + 𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +

1

𝛾𝜂
𝜂̇̂(𝜂̂ −

𝜂) +
1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍)  (36) 

Using (33) and (34), equation (36) yields  

𝑉̇ = 𝚵𝑇𝑫𝑥(𝒙̈ − 𝒙̈𝑚 + 𝒌1𝒆̇) +
1

2
𝚵𝑇𝑫̇𝑥𝚵 + 𝑷̇̂𝑇𝚪−1(𝑷̂ −

𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (37) 

 

𝑉̇ = 𝚵𝑇(𝑫𝑥𝒙̈ − 𝑫𝑥(𝒙̈𝑚 − 𝒌1𝒆̇)) +
1

2
𝚵𝑇𝑫̇𝑥𝚵 +

𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (38) 

One can rewrite equation (27) as 

𝑫𝑥𝒙̈ = 𝒗 − 𝝁 − 𝑪𝑥𝒙̇ − 𝑮𝑥 − 𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒 (39) 

Substituting (39) into (38) we have 

𝑉̇ = 𝚵𝑇(𝒗 − 𝝁 − 𝑪𝑥𝒙̇ − 𝑮𝑥 − 𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒 − 𝑫𝑥(𝒙̈𝑚 −

𝒌1𝒆̇)) +
1

2
𝚵𝑇𝑫̇𝑥𝚵 + 𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +

1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍)  (40) 

Considering (33) and (34), one can obtain 

 𝒙̇ = 𝚵 + 𝒙̇𝑚 − 𝒌1𝒆 (41) 

Thus, substituting (41) into (40) yields to 

 

 
 

Fig. 1. The Block diagram of the control system 
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𝑉̇ = 𝚵𝑇(𝒗 − 𝝁 − 𝑪𝑥(𝚵 + 𝒙̇𝑚 − 𝒌1𝒆) − 𝑮𝑥 −

𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒 − 𝑫𝑥(𝒙̈𝑚 − 𝒌1𝒆̇)) +

1

2
𝚵𝑇𝑫̇𝑥𝚵 +

𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (42) 

In other words, 

 𝑉̇ =
1

2
𝚵𝑇(𝑫̇𝑥 − 2𝑪𝑥)𝚵 + 𝚵𝑇(𝒗 − 𝝁 − 𝑫𝑥(𝒙̈𝑚 − 𝒌1𝒆̇) −

𝑪𝑥(𝒙̇𝑚 − 𝒌1𝒆) − 𝑮𝑥 − 𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒) + 𝑷̇̂𝑇𝚪−1(𝑷̂ −

𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (43) 

Let us define the modified velocity and acceleration 
in task-space as follows 

 𝒙̇𝑟 = 𝒙̇𝑚 − 𝒌1𝒆 (44) 

 𝒙̈𝑟 = 𝒙̈𝑚 − 𝒌1𝒆̇ (45) 

By using the skew-symmetric property (31) and 
equations (44) and (45), one can modify (43) as  

𝑉̇ = 𝚵𝑇(𝒗 − 𝝁 − 𝑫𝑥𝒙̈𝑟 − 𝑪𝑥𝒙̇𝑟 − 𝑮𝑥 − 𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒) +

𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (46) 

Considering linear parameterization property (32), 
we can write 

𝑫𝑥𝒙̈𝑟 + 𝑪𝑥𝒙̇𝑟 + 𝑮𝑥 = 𝒀𝑥(𝒙, 𝒙̇, 𝒙̇𝑟 , 𝒙̈𝑟)𝑷𝑟 (47) 

It is noted that 𝒀𝑥(𝒙, 𝒙̇, 𝒙̇𝑟 , 𝒙̈𝑟) ∈ 𝑅𝑛×𝑛𝑝 and  

𝑷𝑟 ∈ 𝑅𝑛𝑝×1 are regression matrix and vector of 
parameters, respectively, where 𝑛𝑝 is the number of 
parameters. By substituting (47) into (46), 

𝑉̇ = 𝚵𝑇(𝒗 − 𝝁 − 𝒀𝑥(𝒙, 𝒙̇, 𝒙̇𝑟 , 𝒙̈𝑟)𝑷𝑟 − 𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒) +

𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (48) 

Remark 4. Researchers have faced difficulties in 
analyzing the motion equation in task-space since the 
exact kinematics model is not available in practice or 
surplus of sensors is required to monitor the motion of an 
end-effector. To deal this problem, let us consider the 
transformation functions as follows 

 𝒙̇𝑟 = 𝑱(𝒒)𝒒̇𝑟 (49) 

 𝒙̈𝑟 = 𝑱̇(𝒒)𝒒̇𝑟 + 𝑱(𝒒)𝒒̈𝑟  (50) 

By applying (49) and (50) to equation (47) and using 
(28-30), it can be obtained  

 𝒀𝑥(𝒙, 𝒙̇, 𝒙̇𝑟 , 𝒙̈𝑟)𝑷𝑟 = 𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)𝑷 (51) 

Using (51) and also transforming the error dynamics 
(33) into joint space, i.e. 𝚵 = 𝑱(𝒒̇ − 𝒒̇𝑟), equation (48) 
can be modified as  

𝑉̇ = (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

(𝒗 − 𝝁 − 𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)𝑷 −

𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒) + 𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +

1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍)  (52) 

This paper proposes the control law as  

𝒗 = 𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)𝑷̂ − 𝒌2𝑱(𝒒̇ − 𝒒̇𝑟) + 𝝁̂ − 𝒗1 (53) 

in which 𝒌2 ∈ 𝑅𝑛×𝑛 is a diagonal positive definite matrix 
and 𝒗1 is a robustifying term. By applying the control law 
(53) to (52), we have 

𝑉̇ = (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

(𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)(𝑷̂ − 𝑷) − 𝒌2𝑱(𝒒̇ −

𝒒̇𝑟) + 𝝁̂ − 𝝁 − 𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒 − 𝒗1) + 𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +

1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (54) 

Assume that 𝑹𝒌𝑚
−1𝒓 and 𝑭𝑒 are bounded as follows 

 ‖𝑹𝒌𝑚
−1𝒓‖ ≤ 𝜂1 (55) 

 ‖𝑭𝑒‖ ≤ 𝜂2 (56) 

Using the Cauchy–Schwartz inequality, we have 

‖(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝑹𝒌𝑚
−1𝒓𝑱𝑇𝑭𝑒‖ ≤ 𝜂 ‖(𝑱(𝒒̇ − 𝒒̇𝑟))

𝑇
𝑱𝑇‖ 

  (57) 

where 𝜂 ≜ 𝜂1𝜂2. By considering (57), equation (54) can 
be written as 

𝑉̇ ≤ (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

(𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)(𝑷̂ − 𝑷) − 𝒌2𝑱(𝒒̇ −

𝒒̇𝑟) + 𝝁̂ − 𝝁 − 𝒗1) + 𝜂 ‖(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝑱𝑇‖ +

𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (58) 

The robustifying term is selected as  

 𝒗1 =
𝜂̂2𝑱𝑇𝑱2(𝒒̇−𝒒̇𝑟)

‖(𝑱(𝒒̇−𝒒̇𝑟))
𝑇

𝑱𝑇‖𝜂̂+𝛿𝑒−𝜎𝑡
 (59) 

By substituting (59) in (58) and some manipulations, 
we have  

𝑉̇ ≤ (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

(𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)(𝑷̂ − 𝑷) − 𝒌2𝑱(𝒒̇ −

𝒒̇𝑟) + 𝝁̂ − 𝝁) − (𝜂̂ − 𝜂) ‖(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝑱𝑇‖ + 𝛿𝑒−𝜎𝑡 +

𝑷̇̂𝑇𝚪−1(𝑷̂ − 𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (60) 

Assume that the uncertainty (10) can be modelled as  

 𝝁 = 𝒀𝑚𝝍 + 𝜺𝑓 (61) 

where  𝜺𝑓 is a modelling error. One can employ (18) and 
(61) to (60) obtaining  
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𝑉̇ ≤ (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

(𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)(𝑷̂ − 𝑷) − 𝒌2𝑱(𝒒̇ −

𝒒̇𝑟)) + (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝒀𝑚(𝝍̂ − 𝝍) − (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝜺𝑓 +

𝛿𝑒−𝜎𝑡 − (𝜂̂ − 𝜂) ‖(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝑱𝑇‖ + 𝑷̇̂𝑇𝚪−1(𝑷̂ −

𝑷) +
1

𝛾𝜂
𝜂̇̂(𝜂̂ − 𝜂) +

1

𝛾𝑓
𝝍̇̂𝑇(𝝍̂ − 𝝍) (62) 

If the adaptation laws are chosen as  

 𝑷̇̂𝑇 = −(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟)𝚪 (63) 

 𝝍̇̂𝑇 = −𝛾𝑓(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝒀𝑚 (64) 

 𝜂̇̂ = 𝛾𝜂 ‖(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝑱𝑇‖ (65) 

Then equation (62) is expressed as 

𝑉̇ ≤ −(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝒌2𝑱(𝒒̇ − 𝒒̇𝑟) − (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝜺𝑓 +

𝛿𝑒−𝜎𝑡  (66) 

The following assumptions are made to complete the 
stability analysis [26,30]: 

Assumption 1 The desired trajectory 𝒙𝑑 must be 
smooth in the sense that 𝒙𝑑 and its derivatives up to a 
necessary order are available and all uniformly bounded.  

Assumption 2 The external disturbance 𝝋(𝑡) is 
bounded as ‖𝝋(𝑡)‖ ≤ 𝜑𝑚𝑎𝑥 . 
where 𝜑𝑚𝑎𝑥 is the maximum value for the external 
disturbance. The electric motors should be protected 
against over-voltage, thus the next assumption is 
considered. 

Assumption 3 The motor voltage is bounded 
as ‖𝒗(𝑡)‖ ≤ 𝑣𝑚𝑎𝑥 . 
The error dynamics, 𝚵 = 𝑱(𝒒̇ − 𝒒̇𝑟), reduces if 𝑉̇ < 0. 
Hence, satisfying 𝑉̇ < 0 for equation (66) yields   

−(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝜺𝑓 + 𝛿𝑒−𝜎𝑡 ≤ (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝒌2𝑱(𝒒̇ −

𝒒̇𝑟)   (67) 

Since 𝒌2 is a positive definite matrix, then the right-
hand side of (67) is bounded as 

𝜆𝑚𝑖𝑛(𝒌2)‖𝑱(𝒒̇ − 𝒒̇𝑟)‖2 ≤ (𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝒌2𝑱(𝒒̇ − 𝒒̇𝑟) ≤
𝜆𝑚𝑎𝑥(𝒌2)‖𝑱(𝒒̇ − 𝒒̇𝑟)‖2  (68) 

where 𝜆𝑚𝑖𝑛(𝒌2) and 𝜆𝑚𝑎𝑥(𝒌2) are the minimum and the 
maximum eigenvalues of 𝒌2, respectively. 

Using the Cauchy–Schwartz inequality and 
considering the upper bound of modelling error as ‖𝜺𝑓‖< 
ρ, the left-hand side of (67) can be obtained 

−(𝑱(𝒒̇ − 𝒒̇𝑟))
𝑇

𝜺𝑓 + 𝛿𝑒−𝜎𝑡 ≤ ‖𝑱(𝒒̇ − 𝒒̇𝑟)‖‖𝜺𝑓‖ + 𝛿 <

𝜌‖𝑱(𝒒̇ − 𝒒̇𝑟)‖ + 𝛿  (69) 

Therefore, by considering (68) and (69) in order to 
satisfy 𝑉̇ < 0 

 𝑉̇ < −𝜆𝑚𝑖𝑛(𝒌2)‖𝑱(𝒒̇ − 𝒒̇𝑟)‖2 + 𝛿 + 𝜌‖𝑱(𝒒̇ − 𝒒̇𝑟)‖(70) 

In other words 

 𝜆𝑚𝑖𝑛(𝒌2) >
𝛿

‖𝑱(𝒒̇−𝒒̇𝑟)‖2 +
𝜌

‖𝑱(𝒒̇−𝒒̇𝑟)‖
 (71) 

Let us define two diagonal positive definite matrices 
𝒌21 and 𝒌22 such that 𝒌2 = 𝒌21 + 𝒌22 (i.e. 𝜆𝑚𝑖𝑛(𝒌2) =

𝜆𝑚𝑖𝑛(𝒌21) + 𝜆𝑚𝑖𝑛(𝒌22)), in order to satisfy 

 𝜆𝑚𝑖𝑛(𝒌21) >
𝛿

‖𝑱(𝒒̇−𝒒̇𝑟)‖2 (72) 

 𝜆𝑚𝑖𝑛(𝒌22) >
𝜌

‖𝑱(𝒒̇−𝒒̇𝑟)‖
 (73) 

As a result, in order to satisfy (67), it is sufficient that  

 √
𝛿

𝜆𝑚𝑖𝑛(𝒌21)
≜  𝛽1 < ‖𝑱(𝒒̇ − 𝒒̇𝑟)‖ (74) 

 𝜌

𝜆𝑚𝑖𝑛(𝒌22)
≜  𝛽2 < ‖𝑱(𝒒̇ − 𝒒̇𝑟)‖ (75) 

where 𝛽1 and 𝛽2 are positive constants. It is noted that 
𝑉̇ < 0 as long as 𝛽 < ‖𝑱(𝒒̇ − 𝒒̇𝑟)‖ in which  
𝛽 = max (𝛽1, 𝛽2). This implies that the reference error 𝒆 
and its time derivative 𝒆̇ become smaller out of the ball 
with the radius of 𝛽. As a result, the reference error and 
its time derivative are bounded and ultimately enters into 
the ball with the radius of 𝛽. 

Considering assumption 2 and 3 and the proof given 
by [31], 𝒗, 𝑰𝑎 , 𝑰̇𝑎 and 𝒒̇ are bounded. Since the desired 
impedance matrices 𝑴𝑅, 𝑩𝑅 and 𝑲𝑅 are chosen in such 
a way as the roots of 𝑴𝑅𝑠2 + 𝑩𝑅𝑠 + 𝑲𝑅 be in the left-
hand side of the s-plane and thus according to assumption 
1, equations (56) and (26), 𝒙𝑚 and 𝒙̇𝑚 are bounded. Since 
𝒆, 𝒆̇, 𝒙𝑚 and 𝒙̇𝑚 are bounded, the boundedness of 𝒙, 
𝒙̇, 𝒙𝑟, 𝒙̇𝑟 and 𝒙̈𝑟 is proven. As a result, the regression 
matrix 𝒀𝑥(𝒙, 𝒙̇, 𝒙̇𝑟 , 𝒙̈𝑟) and 𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟) are bounded 
and following that  𝑷̂ is bounded by considering (63). The 
boundedness of equation (19), 𝒆 and 𝒆̇ result in the 
boundedness of 𝝍̂ and 𝜂̂ in equation (64) and (65), 
respectively. Thus, from (18) 𝝁̂ is bounded. 

6. Simulation results 

The proposed control approach is applied for the robust 
control of the electrically driven two-link elbow 
manipulator. The dynamic parameters of the robot and 
the motors’ parameters have been presented in Table. 1 
and Table 2, respectively. The desired position trajectory 
for end-effector, as illustrated in Fig. 2, is formulated by 
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 𝒙𝑑 = [𝑥𝑑1  ,   𝑥𝑑2]𝑇  (76) 

where 𝑥𝑑1 and 𝑥𝑑2 are given as 

𝑥𝑑1 = {
0.65 − 0.65 cos(𝜋𝑡 3⁄ )     0 ≤ 𝑡 < 3

1.3                                             𝑡 ≥ 3
 (77) 

𝑥𝑑2 = 1.3 
 

 

Fig. 2. Desired Trajectory 
Remark 5. To perform simulation and according to 

Remark 4, one can use inverse kinematics in order to 
obtain the joint variables in terms of the x and y 
coordinates. Considering Fig. 3 and using the Law of 
cosines, we have 

 𝑞2 = 𝑐𝑜𝑠−1(
𝑥2+𝑦2−𝑙1

2−𝑙2
2

2𝑙1𝑙2
) (78) 

 𝑞1 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) − 𝑡𝑎𝑛−1(

𝑙2𝑠𝑖𝑛 (𝑞2)

𝑙1+𝑙2𝑐𝑜𝑠 (𝑞2)
) (79) 

 

Fig. 3. A two-link planar arm 

 

 

Table 1.  Dynamic parameters of two-link planar 
arm 

Parameters Value 
𝑙1 , 𝑙2 (𝑚) 1 

𝑙𝑐1, 𝑙𝑐2 (𝑚) 0.5 
𝑚1 (𝑘𝑔) 15 
𝑚2 (𝑘𝑔) 6 

𝐼1 (𝑘𝑔. 𝑚2) 5 
𝐼2 (𝑘𝑔. 𝑚2) 2 

Table 2.  The specifications of permanent magnet 
dc motors. 

Parameters Value 
𝑢𝑚𝑎𝑥(𝑉) 40 

𝑅 (Ω) 1.6 
𝐿 (𝐻) 0.001 

𝐾𝑏 (𝑉. 𝑠/𝑟𝑎𝑑) 0.26 
𝐾𝑚 (𝑁. 𝑚/𝐴) 0.26 

𝐽𝑚 (𝑁𝑚. 𝑠2/𝑟𝑎𝑑) 0.0002 

𝐵𝑚 (𝑁𝑚. 𝑠/𝑟𝑎𝑑) 0.001 

𝑟 0.02 

 
Simulation 1. The environment model with  

𝒙𝑒 = [1.29    y]𝑇 𝑚 and 𝑲𝑒 = 𝑑𝑖𝑎𝑔(100000,0) 𝑁 𝑚⁄  is 
given by 

 𝑲𝑒(𝒙 − 𝒙𝑒) = 𝑭𝑒 (80) 

where 𝒙𝑒 ∈ 𝑅𝑚 is the equilibrium position, and 𝑲𝑒 is a 
𝑛 × 𝑛 diagonal matrix which is called the stiffness of the 
environment. The model reference parameters in (25) are 
set to 𝑴𝑅 = 5.4𝐼2  𝑁𝑠2 𝑚⁄ , 𝑩𝑅 = 1500𝐼2  𝑁𝑠 𝑚⁄ , and 
𝑲𝑅 = 500𝐼2  𝑁 𝑚⁄ . The control approach parameters are 
set to 𝒌1 = 𝑑𝑖𝑎𝑔(125,125), 𝒌2 = 𝑑𝑖𝑎𝑔(2.8,4),   𝚪 =

𝑑𝑖𝑎𝑔(0.01𝐼5, 0.1), 𝛾𝜂 = 0.1, 𝜎 = 0.2, 𝛿 = 0.1 by trial 
and error and the time delay is set to 𝜀 = 0.001 𝑠𝑒𝑐. The 
initial values for vector 𝑷̂(0) are selected as 𝑷̂(0) =

1.1𝑷. Furthermore, the parameters of fuzzy system are 
chosen as 𝛾𝑓 = 0.8 and 𝜎𝑓 = 0.55. The external 
disturbance profile 𝝋(𝑡) is defined as a step function and 
is applied in 𝑡 = 1.5 𝑠𝑒𝑐. The selected amplitude for 
external disturbance is chosen based on approximately 
10% of the maximum voltage amplitude. The initial 
position for the end-effector is set to (𝑥0, 𝑦0) =

(−0.059 𝑚, 1.259 𝑚). The Schematic plot of robot 
manipulator trajectory is shown in Fig. 4. As shown in 
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Fig. 4, the proposed controller should compensate the 
initial position of the end-effector to put it into the 
straight-line trajectory and finally the end-effector will 
interact the environment. 

 

Fig. 4. Schematic plot of robotic trajectory  
 

The contact force between the end-effector and 
environment is depicted in Fig .5. As shown, the contact 
phenomenon occurs in 2.84 𝑠𝑒𝑐 and the generated force 
reaches rapidly a maximum value of 122.1 𝑁. From this 
time forward, the proposed compensator comes into 
operation and efficiently compensates the harmful effect 
of the contact and finally makes the contact force 
approximately decrease to 4 𝑁. 

 

Fig. 5. The contact force between the end-effector and 
environment 

Motors behave well under the permitted voltages as 
shown in Fig. 6. The interaction effect of end-effector 
and environment for both motors’ voltages at  
𝑡 = 2.84 𝑠𝑒𝑐 is detectable. Also, it is noted that from the 
contact between the end-effector and environment 
forward, both motors approximately tolerate constant 
voltages. Fig. 7 illustrates the performance of control 
approach providing similar behavior of robotic system 

and the reference model such that the reference errors are 
reduced well to the range of [−2.5   2.5] × 10−3 𝑚 . The 
tracking performance of the reference model is shown in 
Fig 8. The first reference model tracking error,  
i.e. 𝒙𝑑1 − 𝒙𝑚1, shows that the contact between the end 
effector and the environment occurs at 𝑡 = 2.84 𝑠𝑒𝑐 
along the 𝑥 axis. The second signal of reference model, 
𝒙𝑚2, does not show any deviation from the desired 
signal, 𝒙𝑑2, since there is no force along the 𝑦 axis. It is 
noted that by increasing the first model reference tracking 
error, the control approach protects the robot and the 
environment from the possible detrimental effect of the 
contact. To do this, according to Figure (5) and Figure 
(8), the contact force finally decreases to 4 𝑁 such that 
the second signal of reference model for the end-effector 
is deviated approximately 9𝑚𝑚 along the 𝑥 axis. Figure. 
9 shows the adaptive fuzzy parameters (Eq. 64),  
𝝍̂ = [𝝍̂1, … , 𝝍̂27]

𝑇, which all parameters finally converge 
to constant values. The adaptation of 𝜂̂ (Eq. 65) and 𝑷̂ 
(Eq. 63) is also depicted in Fig. 10 and Fig. 11, 
respectively. The effectiveness of the proposed controller 
is shown by simulation results. 

 

Fig. 6. Control efforts of the proposed control approach 

 

Fig. 7. The reference errors (Eq. 34)  
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Fig. 8. Tracking performance of the reference model 

 

Fig. 9. Adaptation of uncertainty fuzzy parameters 

 

Fig. 10. Adaptation of parameter 𝜂̂ 

 

Fig. 11. Adaptation of 𝑷̂ 
 

Simulation 2. The performance of the proposed 
controller is evaluated by different stiffness of the 
environments. To perform simulation, four values for 𝑲𝑒 
are chosen as 𝑲𝑒1 = 𝑑𝑖𝑎𝑔(20000,0) , 𝑲𝑒2 =

𝑑𝑖𝑎𝑔(60000,0) , 𝑲𝑒3 = 𝑑𝑖𝑎𝑔(100000,0) and 𝑲𝑒4 =

𝑑𝑖𝑎𝑔(140000,0). Fig. 12 and Fig. 13 illustrate the 

contact force between the end-effector and different 
environments and the performance of the control method 
interacting with environments with different stiffness, 
respectively. 

 

Fig. 12. The contact force between the end-effector and 
environments with different stiffness 

 

Fig. 13. The performance of the control method interacting with 
environments with different stiffness 

7. Conclusion 

This paper has proposed a model-reference impedance 
control approach using fuzzy uncertainty estimator for 
the robust control of electrically driven robot 
manipulators. In the proposed control method, a desired 
dynamical behavior of the robot interacting with an 
environment is considered as the model-reference such 
that this model-reference provides a reference signal for 
a robot whether in tracking or contact situations. As the 
interaction between an end-effector and an environment 
occurs, the contact force is exerted to the model-
reference and the robotic system receives the output of 
model-reference as a desired trajectory and thus the aim 
of the controller is to reduce the difference between the 
task space desired trajectory and the desired impedance 
model. It is worth noting that the feedback of contact 
force is not utilized in the structure of the proposed 
controller and the adaptive laws since by increasing the 
contact force at the time of the interaction between an 
end-effector and an environment, existing the contact 
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force will cause problematic issues for control designers. 
Furthermore, to improve the performance of control 
system and also compensate un-modelled dynamics and 
external disturbances, two control terms namely a 
robustifying term and a fuzzy uncertainty estimator are 
employed in the structure of the controller. The proposed 
control approach has shown a good performance in terms 
of simplicity in design, high-performance of contact 
force compensation and small reference error. The 
stability analysis has been guaranteed by the proposed 
control method and the simulation results verified the 
effectiveness of the method. 

 

Appendix A.  

The regressor matrix 𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟) is formulated as 

𝒀(𝒒, 𝒒̇, 𝒒̇𝑟 , 𝒒̈𝑟) = [
𝑌11 𝑌12 𝑌13 𝑌14 𝑌15 𝑌16

𝑌21 𝑌22 𝑌23 𝑌24 𝑌25 𝑌26
]

 (A.1) 

where 
 

𝑌11 = 𝑌13 = 𝑞̈𝑟1 

𝑌12 = 𝑌22 = 𝑞̈𝑟1 + 𝑞̈𝑟2 

𝑌14 = 2𝑙1𝑐𝑜𝑠(𝑞2)𝑞̈𝑟1 + 𝑙1𝑐𝑜𝑠(𝑞2)𝑞̈𝑟2 −
𝑙1𝑠𝑖𝑛(𝑞2)𝑞̇2𝑞̇𝑟1 − 𝑙1𝑠𝑖𝑛(𝑞2)(𝑞̇1 + 𝑞̇2)𝑞̇𝑟2 +
𝑔𝑐𝑜𝑠(𝑞1 + 𝑞2)  

𝑌15 = 𝑔𝑐𝑜𝑠(𝑞1),  𝑌16 = 𝑞̇𝑟1, 𝑌21 = 𝑞̈𝑟2 

𝑌23 = 𝑌25 = 0 

𝑌24 = 𝑙1𝑐𝑜𝑠(𝑞2)𝑞̈𝑟1 + 𝑙1𝑠𝑖𝑛(𝑞2)𝑞̇1𝑞̇𝑟1

+ 𝑔𝑐𝑜𝑠(𝑞1 + 𝑞2) 

𝑌26 = 𝑞̇𝑟2 
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