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Abstract— Aim at the Cyclic Bayesian Network, discusses 
the convergency of the ring’s probability distribution. Simplify a 
cycle to a Simple-Cycle via node elimination operation, 
probability convergency of the cycle is proved. Based on cycle’s 
probability convergency, probability propagation method is 
proposed.  
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I. INTRODUCTION 

Software engineering practice shows[1], software project’s 
risks root in the uncertainties of software project process. 
Modeling software project process to abstract, represent and 
analyze the software process, can identify risk factors, estimate 
risk expense and construct risk relaxation program. 

A Bayesian Network[2] (BN）is a graphical model that 
encodes relationship among variables of interest. At the same 
time, a BN is also a probability inference technique to deal 
with conditional uncertainty among different knowledge 
components, and it offers an ideal mathematic formalization for 
representation of uncertainty. A BN is the integration of graph 
theory and probability theory. A BN is a complicated evaluated 
causality graph intuitively, each node denotes a variable in the 
domain, namely event. The arc between nodes denotes the 
direct causality between events. Generally speaking, a BN is a 
directed acyclic graph ( , )V E , where V  is the set of nodes and 
E  is the set of arcs. For any ( , )x y E , x  is intituled as 
y ’s parent node, marked as ( )pa y , and y  is x ’s descent 

node, marked as ( )desc x . Every node has its conditional 
probability distribution reflecting the dependence relationship 
between it’s parent nodes and itself. A BN represents joint 
probability distribution of involved variables in the interested 
domain essentially. Due to the conditional independence, joint 
probability distribution of the network can be obtained by the 
chain equation (1). Lots of probability inference methods [3] 
have been exploited based on equation (1). 


1 ( | ( ))n

i i iP p x pa x   

For the firm mathematic theoretic base, BN is deemed as 
the ideal tool for knowledge representation, inference and 
estimation in uncertain environment[4]. In the software 
engineering domain, BN has been used to estimate software’s 
quality and faults successfully [5,6]. But when we model 

software project process as a BN to estimate and evaluate 
software project risk, there are always directed cycles in the 
BN, for doing poorly done work over again, iterative 
development and etc. are possible in software project process. 
Probability inference of BN with directed cycles can not be 
carried out as Equation (1) shows. In this paper, we will discuss 
the problem of cyclic BN. 

An outline of the remainder of the paper is as follows. In 
Section 2, we discuss how the cyclic BN can be simplified. In 
Section 3, we discuss the probability conventency for directed 
cycle. In section4, we discuss probability propagation for 
cyclic BN and carry out a case study. Finally, in Section 5, we 
conclude with a summary and a statement of future research.  

II. SIMPLIFY THE CYCLIC BAYESIAN NETWORKS  

A. Definition 

Firstly, we suppose that all the nodes in this paper are 
discrete variables, and the number of their values is limited. 
The relative conceptions are listed as follows: 

Cyclic Bayesian Network [7] (Cyclic BN): if any directed 
cycles existed in a Bayesain Network ( , )BN V E , then 

( , )BN V E  is named as a Cyclic Bayesian Network. Directed 
cycle is marked as ( , )L N R , where N E  is the set of nodes 
on the cycle, and R E  is the set of directed arcs. 

Input of a cycle: A node on a cycle v N  which have 
parent nodes ( )pa v ,and ( )pa v don’t belong to the cycle 

( )pa v N , then ( )pa v  are named as input nodes of this cycle 
and v  as an Inceptor-Node. 

Inquired-Node: An Inquired-Node is the node whose 
values and probability distribution demand to be obtained. For 
a directed cycle, the node possessing descent nodes which 
don’t belong to this cycle, can be treated as an Inquired-Node. 

Node-Elimination [7]: the operation of eliminating some 
node on a cyclic BN, at the same time changing the probability 
distribution of relative nodes conforming to certain rules, and 
having no influence on the probability propagation, is named as 
Node-Elimination. 

Normal-Node: a node on a directed cycle is named as an 
Ordinary-Node, when it isn’t an evidence node nor an 
Inquired-Node.  
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Simple-Cycle: a cycle possessing just two nodes is named 
as a Simple-Cycle.  

B. Simplify the Directed Cycle 

Lemma 1[7] For a cycle possessing no inputs, the 
Ordinary-Nodes can be eliminated one by one until the cycle is 
converted into a Simple-Cycle.  

Lemma 2 For a cycle possessing inputs, the Normal-Nodes 
can be eliminated one by one until the cycle is converted into a 
Simple-Cycle.  

Proof: Let us consider a cycle possessing three nodes. 
There are three cases according to different Inquired-Node:  

1) if the Inquired-Node is an evidence node 

A

B C

E

A

C

E

 
FIGURE I.  IF INCEPTOR-NODE IS EVIDENCE NODE  

As Figure 1 shows, Inceptor-Node A  is an evidence node. 
After node B is eliminated, the topological structure is the right 
figure in Figure 1. Calculate each node’s probability 
distribution as follows：  

( ) '( , , )

( , , , )

( | ) ( ) ( | ) ( | )

P C P A E C
EA

P A B C E
B EA

P A E P E P B A P C B
E BA

 

 

  



Then '( | ) ( | ) ( | )
B

P C A P B A P C B , '( | ) ( | )P A C P A C  and 

'( | ) ( | )P A E P A E . 

2) If the Inceptor-Node is an Inquired-Node 

A

B C

E

A

C

E

 
FIGURE II.  IF INCEPTOR-NODE IS INQUIRED-NODE  

As Figure 2 shows, Inceptor-Node C  is an Inquired-Node. 
After node B  eliminated, the topological structure is the right 
figure in Figure 2. Calculate the probability distribution as 
follows: 

( ) '( , , )

( ) ( ) '( | , )

( ) ( | ) ( | , ) ( )

( ) ( ) ( | ) ( | , )

A E

A E

A E B

A E B

P C P A C E

P A P E P C A E

P A P B A P C B E P E

P A P E P B A P C B E















 



'( | , ) ( | ) ( | , )
B

P C A E P B A P C B E  '( | ) ( | )P A C P A C 

3) If the Inceptor-Node is an Ordinary-Node 

A
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E
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C
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FIGURE III.  IF INCEPTOR-NODE IS ORDINARY-NODE  

As Figure 3 shows, Inceptor-Node B  is an 
Ordinary-Node. After node B  is eliminate, the topological 
structure is the right figure in Figure 3. Calculate the 
probability distribution as follows: 

( ) '( , , )

( ) ( ) '( | , )

( ) ( ) ( | , ) ( | )

( ) ( ) ( | , ) ( | )

A E

A E

A E B

A E B

P C P A E C

P A P E P C A E

P A P E P B A E P C B

P A P E P B A E P C B















 



'( | , ) ( | , ) ( | )
B

P C A E P B A E P C B  

Synthesize the above three instances, Lemma 2 is proofed.  

Theorem 1 Any directed cycle can be simplified to a 
Simple-Cycle via Node-Elimination operation.  

Lemma 1 indicates that no-inputs cycle can be simplified to 
a Simple-Cycle, and Lemma 2 indicates the cycle possessing 
inputs can also be simplified to a Simple-Cycle, so Theorem 2 
is tenable. That is to say, every directed cycle on a cyclic BN 
can be simplified to a Simple-Cycle.  

III. CONVERGENCY ANALYSIS FOR DIRECTED CYCLE 

Lemma 3[7] If every node on a Simple-Cycle has just two 
values, then the cycle’s probability distribution is convergent. 

Proof: The Simple-Cycle’s structure is showed in Figure 4, 
node A  and B  are both two-valued nodes, 1 2( , )A A A , 

1 2( , )B B B . 

A B
 

FIGURE IV.  SIMPLE CYCLE 

Let ( | )i j ijP A B  , ( | )i j ijP B A  where 1, 2i   and 

1, 2j  , and the initial probability state is 0 0
1 1 2 2( : , : )b bB B P B P . 

1) After the first propagation, probability states of each 
node are 1 1

1 1 2 2( : , : )a aA A P A P  and  1 1
1 1 2 2( : , : )b bB B P B P : 

1 0 0
1 1 11 2 21a b bP P P   

1 0 0
2 1 12 2 22a b bP P P   
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1 1 1 0 0 0 0
1 1 11 2 21 1 11 2 21 11 1 12 2 22 21

0 0
1 11 11 12 21 2 21 11 22 21

0
21 11 22 21 11 11 12 21 21 11 22 21 1

0
1

( ) ( )

( ) ( )

( ) (( ) ( ))

b a a b b b b

b b

b

b

P P P P P P P

P P

P

w sP

       

       

           


     

   

     

 



1 1 1
2 1 12 2 22b a aP P P   

where 
21 11 22 21 w     , 


11 11 12 21 21 11 22 21( ) ( ) s           

2) After probability propagate n  times, the probability 
distribution of node B ’s state 1B  is: 

( 1)
1 1

( 2)
1

2 ( 2)
1

1 0
1

( )

(1 )

(1 ... )

n n
b b

n
b

n
b

n n
b

P w sP

w s w sP

w s s P

w s s s P









 

  

  

     , and 

1 1
1 1 11 2 21

2 1 0
21 11 21 1( )[ (1 ... ) ]

n n n
a b b

n n
b

P P P

w s s s P

 

  

 

 

 

      


where 

21 11 22 21

11 11 12 21 21 11 22 21

1

( ) ( ), | | 1

w

s s

   
       

  
     



If | | 1s  , Then: 1
lim(1 ... )

1
n

n
s s

s
   

 , 
lim 0n

n
s


 . 

So 

 *
1 1lim

1
n

b b
n

w
P P

s
 


 

 *
1 1 21 11 21lim ( )

1
n

a a
n

w
P P

s
  


   


 

If 1s  , then 11 11

21 21

1

0

 
 

 
  

, or 12 12

22 22

1

0

 
 

 
  

. Well then: 

21 11 22 21 0w       , and 

1 0 0
1 1 1

2 1 0 0 0
1 21 11 21 1 21 2 11 1

(1 ... )

( )[ (1 ... ) ]

n n n
b b b

n n n
a b b b

P w s s s P P

P w s s s P P P    



 

      


        


If 1s   , then 11 11

21 21

1

0

 
 

 
  

, or 22 21

12 11

1

0

 
 

 
  

. 

So, when 21 11

22 21

1

0

 
 

 
  

, 21 11 22 21 1w       : 

0
11 0

1 1 0
2

(1 ... ) bn n n
b b

b

P n is even
P w s s s P

P n is odd


      




0
12 1 0

1 21 11 21 1 0
2

( )[ (1 ... ) ] bn n n
a b

b

P n is odd
P w s s s P

P n is even
    

        




The probability distribution of each node on the cycle is 

0 0 0 0 0 0 0 0
1 2 1 2 2 1 1 2 2 1

0 0 0 0 0 0 0 0
1 2 2 1 1 2 2 1 1 2

( , ) : ( , ), ( , ), ( , ), ( , )...

( , ) : ( , ), ( , ), ( , ), ( , )...

b b b b b b b b

b b b b b b b b

A A A P P P P P P P P

B B B P P P P P P P P







When 22 21

12 11

1

0

 
 

 
  

, then 21 11 22 21 1w       : 

0
11 0

1 1 0
2

(1 ... ) bn n n
b b

b

P n is even
P w s s s P

P n is odd


      




0 0
11 1 21 22 1 0

1 21 11 21 1 0 0
11 2 21 1

( )[ (1 ... ) ] b bn n n
a b

b b

P P n is odd
P w s s s P

P P n is even

 
  

 
 

        




The probability distribution of each node on the cycle is: 

0 0 0 0 0 0 0 0
1 2 11 1 21 2 11 2 21 1 11 2 21 1 11 1 21 2

0 0 0 0 0 0 0 0
1 2 2 1 1 2 2 1 1 2

( , ):( , ),( , )...

( , ):( , ),( , ),( , ),( , )...

b b b b b b b b

b b b b b b b b

A A A P P P P P P P P

B B B P P P P P P P P

           





Synthesize all the above discusses, when 1 1s   , the 
probability distribution of every node on the cycle is 
convergent; when 1s   , the probability distribution is 
known. We call the phenomena that every node’s probability 
distribution is constringent as probability convergency of the 
directed cycle. 

Lemma 4 Simple-Cycle possesses probability 
convergency.  

Proof: As Fig.4 shows, the probability distribution of each 
node is ( | )P A B , ( | )P B A . 

1) if node B  is multi-valued 1 2( , ,..., ), 2nb b b n  , and 

node A  is two-valued, then: 
Taken 1b  as a dummy state 1B , and  2( ,..., )nb b  as 

another dummy state 2B , calculate the new probability 
distribution for each dummy state: 

1 2'( | ) ( ( | ), ( | ))P B A P B A P B A  and 

1 2'( | ) ( ( | ), ( | ))P A B P A B B P A B B   : 

2
2

( | ) ( | )
n

i
i

P B A P B b A


  
2

[ 2] 1

( | ) ( ) ( | )
n

i i
i n

P A B P b P A b
 

  

Thus there are only two nodes on the cycle, and each node 
is two-valued, then the cycle possesses probability 
constringency due to Lemma 3. Let 
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* * * *
1 2 1 2( ( ), ( ), ( ), ( ))P a P a P B P B  be the ultimate probability 

distribution, then: 

* *
1 1( ) ( )P b P B 

* * * *
1 1 2 2( ) ( ) ( | ) ( ) ( | ) ( ) ( | ) 2,...,i i i i

A

P b P A P b A P a P b a P a P b a i n    

2) if node A  and node B  are both multi-valued, then let 
A  be { }, 2ma m   and B  be{ }, 2nb n   in a general way. 

So:  

Taken 1a  as a dummy state 1A , and 2( ,..., )na a  as 

another dummy state 2A , then we know that the cycle 
possesses probability constringency as we just discussed in 1). 
Let * * * *

1 2 1( ), ( ), ( ),.., ( )nP A P A P b P b  be the ultimate 
probability distribution, where 

  * * * *
1 1 2 2( ) ( ) ( | ) ( ) ( | ) ( ) ( | ) 1,...,i i i i

A

P b P A P b A P A P b A P A P b A i n     

 * *

1

( ) ( ) ( | ) 1,...,
n

j i j i
i

P a P b P a b j m


    

So, the ultimate probability state of the cycle is 
* *( ( ), ( )) 1,..., ; 1,...,j iP a P b i m j n  . 

Synthesize the discusses of 1) and 2), Lemma 4 is proofed. 

Theorem 2 A directed cycle’s local probability distribution 
on a cyclic BN is convergent.  

Theorem 2 can be educed easily because Theorem 1, 
Lemma3 and Lemma4 were proofed.  

Any cycle on a cyclic BN must converge to some stable 
probability distribution *P , and *P  can be calculated by 
Equation (2) -(6).  

IV. PROBABILITY PROPAGATION FOR CYCLIC BAYESIAN 

NETWORK  

Directed cycle’s probability convergency is the theoretic 
base for probability propagation. Let probability distribution 

*P  is a directed cycle’s convergent state, then the cycle will be 
treated as a special node of the BN with probability 
distribution *P , so all the probability inference method 
introduced in Reference 3 can be used to update belief.  

But in generally, engineering practice can not repeat 
endless. So, switch node is introduced to solve probability 
propagation problem whose position and value   is 
determined by engineering practice. Assuming the local 
probability distribution of the cycle is 'P  when the switch 
node approach to  , cut the fan-in arc or fan-out arc to destroy 
the cycle. It is important for software project engineering 
practice to destroy the cycle when local probability reaches 
some point, because the ultimate purpose is to reach some 
satisfied situation within limited budget not to perfection. For 
the extreme instance 1s   as discussed in section 3, 

introducing switch node is the only probability inference 
method. 

A simple example is given in Figure 5 to show how the 
probability distribution propagate in the cycle. Software test is 
an iterative process usually, expressed as figure I in Figure 5. 
Conditional probability of each node is known, node A  is 
evidence node, and B ’s initial state is known also. 

 
FIGURE V.  PROBABILITY INFERENCE OF CYCLIC BAYESIAN 

NETWORK  

Given the cycle L ’s joint probability distribution 
converging to * * *( ( ), ( ), ( ))P B P C P D , then as figure II shows, 
taking node D  as evidence node, carry on probability 
propagation in the all the network via Equation (1). 

In software project practice, when the remnant errors less 
than  , system test will always be stopped. So, we choose 
node D  as switch node and its threshold value is  . When 

1 1( ) ( ) ( )k k kP D P D P D        , evaluate local joint 
probability distribution as * kP P , and disconnect the directed 
arc D B . Then as figure III shows, we can calculate the 
joint probability distribution for all nodes in the network 
according to Equation (1).  

V. CONCLUSION 

Modeling the uncertainties in the software project process 
by Bayesian Network, provides a useful method to identify, 
evaluate and reduce latent risks in software project process. 
Modeling the iterative development of the software project 
based on Bayesain Network, results in the directed cycles in the 
BN process model. BN is a graphical model that encodes 
relationships among variables of interest, and it is a directed 
acyclic graph which has no ability to deal with the directed 
cycles. In this paper, Theorem 1 indicates that, all the ordinary 
nodes on the directed cycle can be eliminated one by one until 
the cycle is converted into a simple cycle, and Theorem 2 
indicates that any simple cycle possesses probability 
astringency, so all the directed cycles are probability 
convergent. Based on probability convergency of the directed 
cycle, two kinds of probability propagation route are proposed. 

In this paper, we discuss cyclic BN premising the nodes are 
all discrete variables, how about the continuous variables? We 
will discuss further in the future. 
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