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Abstract—This paper presents an automatic method to 
generate a hex-dominant hybrid mesh with the input being a 
Delaunay tetrahedral mesh. In this method, we replace the 
interior tetrahedra in the original mesh with regular hexahedra, 
and fill the cavity between the boundary tetrahedral and the 
interior structured elements with tetrahedral elements. The mesh 
generated by this method is a tetra-hex hybrid mesh which only 
consists of two types of grids. The result demonstrated that our 
method can perform on most tetrahedral mesh successfully. The 
total number of grids in the hybrid mesh is reduced markedly, 
and moreover, the resultant mesh can keep the conformity of the 
boundary and consist of grids with high quality.  

Keywords—hybrid mesh; advancing front technique; delaunay 
triangulation 

I. INTRODUCTION 

Owing to the development of computing hardware, many 
numerical simulation methods, such as finite element method 
(FEM), have been widely used in industry. However, as an 
essential preprocessing step, the mesh generation directly 
impacts on the accuracy and convergence of the simulation [1]. 
Currently, the generated mesh can be roughly classified into the 
structured and unstructured mesh, while the simulation on the 
structured grids require less computational memory and cost [2] 
and the unstructured mesh can adapt to the complicated 
boundaries of the domain with arbitrary shape [3][4]. Since the 
hybrid grids combine the advantages of both unstructured and 
structured mesh, the methods for the hybrid grid generation 
have received much attention in recent decades. 

The basic elements in hybrid grids include tetrahedra, 
prisms, hexahedrons, and pyramids. The researchers usually 
use two or more of basic elements above to create a hybrid 
mesh. For instance, the hybrid grids consisting of prismatic and 
tetrahedral elements were first proposed by Nakahashi [5], and 
developed extensively by Kallinderis et al. [6]. In 2009, 
Yamakawa and Shimada [7] presented a new method of prism-
tetra hybrid mesh generation that replaced tetrahedral elements 
filling a sweepable volume with prismatic elements. This 
method effectively reduced the number of elements, and the 
resultant hybrid mesh yielded a more accurate solution than a 
tetrahedral mesh. In addition, the hex-dominant hybrid mesh [8] 
is also a popular type of hybrid mesh. Steven J. Owen [9] 
presented a hex-dominant mesh generation method which 
guarantees the boundary conformity using 3D constrained 
triangulation. In the work of Jesse Chan et al.[10], they create 

the hex-dominant hybrid mesh of hexahedra, wedge, pyramid, 
and tetrahedral with the same size by taking every regular 
hexahedron as the reference hexahedron. In most cases, the 
purpose of most hybrid mesh generation methods is to reduce 
the computational cost and to keep the computational accuracy 
as well. 

In this paper, we propose an automatic method to convert a 
Delaunay tetrahedral mesh to a tetra-hex hybrid mesh. In our 
method, the interior tetrahedra in the original mesh are replaced 
with regular hexahedra, and the tetrahedra near the boundary 
remain. The hybrid mesh generated by our method can keep the 
conformity of the boundary and consist of grids with high 
quality. Moreover, the total number of grids can be markedly 
reduced. 

II. METHOD FOR HYBRID GRID GENERATION 

In this section, we introduce our algorithm to generate the 
tetra-hex hybrid mesh from the Delaunay tetrahedral mesh. The 
input of our algorithm is a Delaunay tetrahedral mesh with  
uniform size and high quality and we intend to fill the domain 
with structured elements inside and tetrahedra around the 
boundary. The main difficulty is to fill the cavity between 
boundary tetrahedral elements and inner structured elements. In 
our method, we design a modified advancing front Delaunay 
triangulation algorithm [11] to address this issue and we 
present the algorithm in the rest of this section. 

A. Advancing front Initialization 

Let TeS1 denote the boundary tetrahedral set, where every 
tetrahedron in TeS1 contains at least one vertex on the boundary. 
The initial front TSori is the inner triangle faces of these 
tetrahdra which are stored in a linked list. Denote one single 
front triangle face as Tm (0≤m≤n-1) and n is the number of the 
front faces. 

B. Hexahedron Insertion 

In this step, the domain inside the initial front is filled with 
regular hexahedra Cubein. However, the insertion process has 
an important principle that the interior hexahedral grids need 
keep a distance with the initial front to avoid too many silvers 
generated. We use the extra bounding box to control the  
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FIGURE I.  INITIAL SEARCH REGION. 

between the initial front and the inner grids. The extra 
bounding box expands the bounding box of the triangular faces 
on the initial front, so that the inner cube which is too close to 
the front will be removed. 

Let FShex be the set of outside surfaces of inner hexahedra 
and let lhex be the length of inner hexahedron. The minimal 
edge length of the initial front, which is denoted as lmin is 
related to lhex. In order to generate tetrahedra with the ratio of 
the radius to the shortest edge smaller than 3.6, we make lhex 
smaller than 1.35lmin. In our experiment, the value of lhex is 
between 1.00 ~ 1.30lmin. 

C. Tetrahedron insertion 

After the pretreatment above, we get an initial front TSori  
and a finishing surface set FShex, and then the empty region 
between TSori  and FShex  need be filled with new tetrahedra. 
Firstly, a list of candidate nodes PSc is formed from all the 
nodes lying on TSori and FShex. For the first triangle Tri0 on the 
initial front, choose a best point P0 from PSc by a Delaunay rule, 
which is known as the empty circumsphere criterion. We create 
the new tetrahedron TeN in the empty region. 

The algorithm of choosing a point satisfying the empty 
circumsphere criterion is shown as follows: 

Algorithm Choosing Process(PSc, Tri0, P0) 

Input     the set of candidate points PSc; 
the first triangle Tri0 on the front; 

Output the point P0 satisfying the empty circumsphere 
criterion; 

1. If PSc is empty, then return NULL. 
2. Create an initial search region D1 for Tri0 (Fig 1), and then 
points inside D1 forms a sub-candidate pointset PSsub. 
3. If PSsub is empty, then return NULL. 

Otherwise, PSsub contains at least one point. 
(a)If PSsub contains only one point Px, then mark Px to be 

P0, return P0. 
(b)Otherwise, choose the point P0 satisfying the empty 

circumsphere criterion from PSsub. 
4. return P0. 
 

In this algorithm above, we create a provisional 
circumsphere for Tri0 for the purpose of removing the 
candidate points which is on the opposite direction or too far 
from Tri0, so the distance d in Fig 1 satisfies d = Rc, and the 
radius of this sphere is Rs = 2 Rc . Moreover, if the output of 

this algorithm is NULL, we can insert a new point P1 in a 
reasonable position, and use P1 and Tri0 to create the new 
tetrahedron. 

After a new tetrahedron TeN has been created, TeN will be 
searched for any collisions with the TSori or FShex. If TeN is 
intersected with any facet, this new tetrahedron will be 
discarded, and we will choose another point P0` for Tri0. If  TeN 
passes the collision detection, the initial front TSori will be 
updated by the new three triangles Tnew on TeN. The result of 
front update is divided into three conditions as follows: 

(a) If TSori  contains Tnew, then remove Tnew from TSori. 

(b) If Tnew  overlaps with FShex, then do nothing. 

(c) If Tnew  overlaps with no facet of TSori and FShex, then 
add Tnew into TSori . 

Choose the first triangle Tri0 from TSori, and repeat the 
processes above, until the TSori  is empty. Finally, we yield a set 
of new tetrahedra TeSin between the front and the finishing 
surface. The whole algorithm of tetrahedron insertion is shown 
as follows: 

Algorithm TetraInsertion(TSori , FShex , TeSin ) 
Input    the list of the initial front TSori ; 

the set of the finishing surface FShex ; 
Output  the set of new tetrahedra TeSin ; 
1. Create PSc  by TSori  and FShex. 
2. While TSori  ≠ Ø 

(a) Choose first triangle TSori ∈  TSori, and call 
ChoosingProcess(PSc, Tri0, P0 ). 

(b) If P0 = NULL, then add a new point P1 to PSc, and 
mark P1 to be P0. 

(c) Create TeN  by P0 and Tri0. 
(d) If TeN fails the intersection test, then discard TeN, and 

choose another point P0`, use P0` and Tri0 to create new 
tetrahedron TeN`. 

(e) Add TeN  or TeN` to TeSin. 
(f) Update TSori . 

 End while. 
3. return TeSin . 

III. ALGORITHM ANALYSIS 

A. Termination 

This method is an automatic hybrid mesh generation 
method which can terminate in a finite time. In our method, 
two issues may bother the process. The first problem is that the 
first-circumscribed sphere of Tri0 contains no candidate point, 
and another one is that Tnew  fails the intersection test. We can 
solve the first problem by adding a suitable point P1 into the 
cavity and choose P1 as the fittest candidate point.  

The second one can also be solved by the step of choosing 
fittest candidate point. In practice, this step is simple as it puts 
points on the triangles, which are adjacent to Tri0, into sub-
candidate pointset PSsub, and choose the fittest point P0 from 
PSsub. There must be at least one point that is in the forward 
direction of Tri0, otherwise no triangular facet can intersect 
with the previous tetrahedron TeN. On another hand, unless 

 

△ABC is the triangle on the front. 

Oc is the center of facet circumcircle. 

Rc is the radius of facet circumcircle. 

Os  is the center of circumsphere. 

Rs is the radius of facet circumsphere. 

d is the distance between Os and Oc. 
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there is a point Pi inside the new tetrahedron TeN`, the new 
tetrahedron TeN` can surely pass the intersection test this time. 
Even if Pi exists, we can choose Pi as the fittest point at first 
time. As a result, it is certain to get a suitable point P0  that can 
create a new tetrahedron which can pass the intersection test. 
Finally, all the triangular faces can connect to FShex, and the 
algorithm terminates. 

B. Algorithm complexity 

There are two main parts in this method, the pretreatment 
and the process of tetrahedron insertion. In the pretreatment, 
we mainly traverse the set of all the input tetrahedra or all the 
hexahedra inserted, and use every hexahedra to do intersection 
test with the initial front, so the algorithm complexity is 
O(Numtetra) and O(Numcube × Numfront).  

However, the main process is an iterative process, and the 
algorithm complexity depends on the total number of input 
tetrahedra. At each iteration, we need create a candidate subset, 
using O(Numpset), and then choose the fittest point, using 
O(Numsubpset) or O(Numsubpset

2 ) in the worst case. While a new 
tetrahedron is created, we will use it to do intersection test with 
the front and the surface of inner hexahedra. The algorithm 
complexity of each intersection test is O(Numfront + Numfhex). 
With the increasing number of the total elements in the mesh, it 
will take more iterations to complete the hybrid mesh 
generation. For example, when the number of elements in the 
resultant mesh is 16905, it needs 9246 iterations. However, 
when the number of elements in the resultant mesh is 31584, it 
needs 14104 iterations to terminate. 

IV. EXPERIMENTAL RESULTS 

We present several mesh examples of our hybrid grid 
generation algorithm in Figure 2 and the statistic on the 
reduced quantity of the grid elements by our method is shown 
in Table 1 In the examples, we choose the hexahedra edge 
length lhex  to be 1.20 lmin . 

 
FIGURE II.  EXAMPLES OF HYBRID MESH, ARCH ( UPPER LEFT), 

SPHERE  ( UPPER RIGHT ), DUMBBELL ( LOWERLEFT ), GRAIL 
( LOW RIGHT ). 

TABLE I.  COMPARISON OF ELEMENTS QUANTITY BETWEEN 
TETRAHEDRA AND HYBRID MESH. 

Number of 
grids 

Tetrahedral
mesh 

Resultant hybrid mesh 

Tetra Hex total Hr/T(%
) 

Arch 57662 29948 1636 31584 45% 

Sphere 65947 25053 3581 28634 56% 

Dumbbell 50176 25144 1583 26727 46% 

Grail 30888 18557 432 18989 38% 
a. Hr is the number of the grids reduced, and T is the number of tetrahedral mesh 

 

 
FIGURE III.  THE GRID OF ARCH WITH DIFFERENT HEXAHEDRA 

SIZE. FROM LEFT TO RIGHT: LHEX EQUALS TO 1.00/1.15/1.30 
LMIN. 

 
FIGURE IV.  THE RATIO OF GRIDS REDUCED ON DIFFERENT SIZE 

OF HEXHEDRA EDGE. (LHEX EQUELS TO X * LMIN , AND X IS 
THE VALUE OF X-AXIS.) 

It is shown that our method can truly generate the 
qualified grids and decrease the number of the grid elements, 
especially the example of Sphere, where the grids can be 
reduced by more than a half. Although the hexahedra are much 
less than tetrahedra in each example, they play an important 
role in reducing total elements number as they not only can 
replace the tetrahedra, but also can reduce the number of points 
inside the mesh. 

The proportions of the grid elements reduced when the 
hexahedra size is different are shown in Fig. 3 and Fig. 4. As 
shown from the line chart, as the size of hexahedra extends, the 
more grids are reduced. The reason for this phenomenon is that 
the extension of the hexahedral size decreases the number of 
the interior hexahedra and the candidate points. Besides, as we 
can see, our method always reduced more elements for the 
example Sphere compared to the Arch. This indicates that 
when the models contain larger cavities inside, the algorithm 
performs better on the reducing of the mesh quantity. 

V. CONCLUSION 

In this paper we have presented an automatic hybrid 
generation mesh method with the input being a Delaunay 
tetrahedral mesh. This method replaces the interior tetrahedra 
with regular hexahedra and in the transition region, and it 

Advances in Intelligent Systems Research, volume 159

274



connects two triangular faces to a quadrilateral face.  Almost 
all tetrahedral mesh can be converted to a tetra-hex hybrid 
mesh by this method. The elements number of resultant mesh is 
reduced significantly and this method can perform much better 
on the model with a large cavity. 
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