
A Tetra-hex Hybrid Mesh Generation Method Based
on Delaunay Triangulation

Pengfei Zhan1,2, Xianhai Meng1,2,*, Zhongxiang Duan1,2 and Qin Yang1,2
1School of Computer Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China

2State Key Laboratory of Software Development Environment, Beijing 100191, PR China
*Corresponding author

Abstract—This paper presents an automatic method to
generate a hex-dominant hybrid mesh with the input being a
Delaunay tetrahedral mesh. In this method, we replace the
interior tetrahedra in the original mesh with regular hexahedra,
and fill the cavity between the boundary tetrahedral and the
interior structured elements with tetrahedral elements. The mesh
generated by this method is a tetra-hex hybrid mesh which only
consists of two types of grids. The result demonstrated that our
method can perform on most tetrahedral mesh successfully. The
total number of grids in the hybrid mesh is reduced markedly,
and moreover, the resultant mesh can keep the conformity of the
boundary and consist of grids with high quality.

Keywords—hybrid mesh; advancing front technique; delaunay
triangulation

I. INTRODUCTION

Owing to the development of computing hardware, many
numerical simulation methods, such as finite element method
(FEM), have been widely used in industry. However, as an
essential preprocessing step, the mesh generation directly
impacts on the accuracy and convergence of the simulation [1].
Currently, the generated mesh can be roughly classified into the
structured and unstructured mesh, while the simulation on the
structured grids require less computational memory and cost [2]
and the unstructured mesh can adapt to the complicated
boundaries of the domain with arbitrary shape [3][4]. Since the
hybrid grids combine the advantages of both unstructured and
structured mesh, the methods for the hybrid grid generation
have received much attention in recent decades.

The basic elements in hybrid grids include tetrahedra,
prisms, hexahedrons, and pyramids. The researchers usually
use two or more of basic elements above to create a hybrid
mesh. For instance, the hybrid grids consisting of prismatic and
tetrahedral elements were first proposed by Nakahashi [5], and
developed extensively by Kallinderis et al. [6]. In 2009,
Yamakawa and Shimada [7] presented a new method of prism-
tetra hybrid mesh generation that replaced tetrahedral elements
filling a sweepable volume with prismatic elements. This
method effectively reduced the number of elements, and the
resultant hybrid mesh yielded a more accurate solution than a
tetrahedral mesh. In addition, the hex-dominant hybrid mesh [8]
is also a popular type of hybrid mesh. Steven J. Owen [9]
presented a hex-dominant mesh generation method which
guarantees the boundary conformity using 3D constrained
triangulation. In the work of Jesse Chan et al.[10], they create

the hex-dominant hybrid mesh of hexahedra, wedge, pyramid,
and tetrahedral with the same size by taking every regular
hexahedron as the reference hexahedron. In most cases, the
purpose of most hybrid mesh generation methods is to reduce
the computational cost and to keep the computational accuracy
as well.

In this paper, we propose an automatic method to convert a
Delaunay tetrahedral mesh to a tetra-hex hybrid mesh. In our
method, the interior tetrahedra in the original mesh are replaced
with regular hexahedra, and the tetrahedra near the boundary
remain. The hybrid mesh generated by our method can keep the
conformity of the boundary and consist of grids with high
quality. Moreover, the total number of grids can be markedly
reduced.

II. METHOD FOR HYBRID GRID GENERATION

In this section, we introduce our algorithm to generate the
tetra-hex hybrid mesh from the Delaunay tetrahedral mesh. The
input of our algorithm is a Delaunay tetrahedral mesh with
uniform size and high quality and we intend to fill the domain
with structured elements inside and tetrahedra around the
boundary. The main difficulty is to fill the cavity between
boundary tetrahedral elements and inner structured elements. In
our method, we design a modified advancing front Delaunay
triangulation algorithm [11] to address this issue and we
present the algorithm in the rest of this section.

A. Advancing front Initialization

Let TeS1 denote the boundary tetrahedral set, where every
tetrahedron in TeS1 contains at least one vertex on the boundary.
The initial front TSori is the inner triangle faces of these
tetrahdra which are stored in a linked list. Denote one single
front triangle face as Tm (0≤m≤n-1) and n is the number of the
front faces.

B. Hexahedron Insertion

In this step, the domain inside the initial front is filled with
regular hexahedra Cubein. However, the insertion process has
an important principle that the interior hexahedral grids need
keep a distance with the initial front to avoid too many silvers
generated. We use the extra bounding box to control the

International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 159

272

FIGURE I. INITIAL SEARCH REGION.

between the initial front and the inner grids. The extra
bounding box expands the bounding box of the triangular faces
on the initial front, so that the inner cube which is too close to
the front will be removed.

Let FShex be the set of outside surfaces of inner hexahedra
and let lhex be the length of inner hexahedron. The minimal
edge length of the initial front, which is denoted as lmin is
related to lhex. In order to generate tetrahedra with the ratio of
the radius to the shortest edge smaller than 3.6, we make lhex
smaller than 1.35lmin. In our experiment, the value of lhex is
between 1.00 ~ 1.30lmin.

C. Tetrahedron insertion

After the pretreatment above, we get an initial front TSori
and a finishing surface set FShex, and then the empty region
between TSori and FShex need be filled with new tetrahedra.
Firstly, a list of candidate nodes PSc is formed from all the
nodes lying on TSori and FShex. For the first triangle Tri0 on the
initial front, choose a best point P0 from PSc by a Delaunay rule,
which is known as the empty circumsphere criterion. We create
the new tetrahedron TeN in the empty region.

The algorithm of choosing a point satisfying the empty
circumsphere criterion is shown as follows:

Algorithm Choosing Process(PSc, Tri0, P0)

Input the set of candidate points PSc;
the first triangle Tri0 on the front;

Output the point P0 satisfying the empty circumsphere
criterion;

1. If PSc is empty, then return NULL.
2. Create an initial search region D1 for Tri0 (Fig 1), and then
points inside D1 forms a sub-candidate pointset PSsub.
3. If PSsub is empty, then return NULL.

Otherwise, PSsub contains at least one point.
(a)If PSsub contains only one point Px, then mark Px to be

P0, return P0.
(b)Otherwise, choose the point P0 satisfying the empty

circumsphere criterion from PSsub.
4. return P0.

In this algorithm above, we create a provisional
circumsphere for Tri0 for the purpose of removing the
candidate points which is on the opposite direction or too far
from Tri0, so the distance d in Fig 1 satisfies d = Rc, and the
radius of this sphere is Rs = 2 Rc . Moreover, if the output of

this algorithm is NULL, we can insert a new point P1 in a
reasonable position, and use P1 and Tri0 to create the new
tetrahedron.

After a new tetrahedron TeN has been created, TeN will be
searched for any collisions with the TSori or FShex. If TeN is
intersected with any facet, this new tetrahedron will be
discarded, and we will choose another point P0` for Tri0. If TeN
passes the collision detection, the initial front TSori will be
updated by the new three triangles Tnew on TeN. The result of
front update is divided into three conditions as follows:

(a) If TSori contains Tnew, then remove Tnew from TSori.

(b) If Tnew overlaps with FShex, then do nothing.

(c) If Tnew overlaps with no facet of TSori and FShex, then
add Tnew into TSori .

Choose the first triangle Tri0 from TSori, and repeat the
processes above, until the TSori is empty. Finally, we yield a set
of new tetrahedra TeSin between the front and the finishing
surface. The whole algorithm of tetrahedron insertion is shown
as follows:

Algorithm TetraInsertion(TSori , FShex , TeSin)
Input the list of the initial front TSori ;

the set of the finishing surface FShex ;
Output the set of new tetrahedra TeSin ;
1. Create PSc by TSori and FShex.
2. While TSori ≠ Ø

(a) Choose first triangle TSori ∈ TSori, and call
ChoosingProcess(PSc, Tri0, P0).

(b) If P0 = NULL, then add a new point P1 to PSc, and
mark P1 to be P0.

(c) Create TeN by P0 and Tri0.
(d) If TeN fails the intersection test, then discard TeN, and

choose another point P0`, use P0` and Tri0 to create new
tetrahedron TeN`.

(e) Add TeN or TeN` to TeSin.
(f) Update TSori .

 End while.
3. return TeSin .

III. ALGORITHM ANALYSIS

A. Termination

This method is an automatic hybrid mesh generation
method which can terminate in a finite time. In our method,
two issues may bother the process. The first problem is that the
first-circumscribed sphere of Tri0 contains no candidate point,
and another one is that Tnew fails the intersection test. We can
solve the first problem by adding a suitable point P1 into the
cavity and choose P1 as the fittest candidate point.

The second one can also be solved by the step of choosing
fittest candidate point. In practice, this step is simple as it puts
points on the triangles, which are adjacent to Tri0, into sub-
candidate pointset PSsub, and choose the fittest point P0 from
PSsub. There must be at least one point that is in the forward
direction of Tri0, otherwise no triangular facet can intersect
with the previous tetrahedron TeN. On another hand, unless

△ABC is the triangle on the front.

Oc is the center of facet circumcircle.

Rc is the radius of facet circumcircle.

Os is the center of circumsphere.

Rs is the radius of facet circumsphere.

d is the distance between Os and Oc.

Advances in Intelligent Systems Research, volume 159

273

there is a point Pi inside the new tetrahedron TeN`, the new
tetrahedron TeN` can surely pass the intersection test this time.
Even if Pi exists, we can choose Pi as the fittest point at first
time. As a result, it is certain to get a suitable point P0 that can
create a new tetrahedron which can pass the intersection test.
Finally, all the triangular faces can connect to FShex, and the
algorithm terminates.

B. Algorithm complexity

There are two main parts in this method, the pretreatment
and the process of tetrahedron insertion. In the pretreatment,
we mainly traverse the set of all the input tetrahedra or all the
hexahedra inserted, and use every hexahedra to do intersection
test with the initial front, so the algorithm complexity is
O(Numtetra) and O(Numcube × Numfront).

However, the main process is an iterative process, and the
algorithm complexity depends on the total number of input
tetrahedra. At each iteration, we need create a candidate subset,
using O(Numpset), and then choose the fittest point, using
O(Numsubpset) or O(Numsubpset

2) in the worst case. While a new
tetrahedron is created, we will use it to do intersection test with
the front and the surface of inner hexahedra. The algorithm
complexity of each intersection test is O(Numfront + Numfhex).
With the increasing number of the total elements in the mesh, it
will take more iterations to complete the hybrid mesh
generation. For example, when the number of elements in the
resultant mesh is 16905, it needs 9246 iterations. However,
when the number of elements in the resultant mesh is 31584, it
needs 14104 iterations to terminate.

IV. EXPERIMENTAL RESULTS

We present several mesh examples of our hybrid grid
generation algorithm in Figure 2 and the statistic on the
reduced quantity of the grid elements by our method is shown
in Table 1 In the examples, we choose the hexahedra edge
length lhex to be 1.20 lmin .

FIGURE II. EXAMPLES OF HYBRID MESH, ARCH (UPPER LEFT),

SPHERE (UPPER RIGHT), DUMBBELL (LOWERLEFT), GRAIL
(LOW RIGHT).

TABLE I. COMPARISON OF ELEMENTS QUANTITY BETWEEN
TETRAHEDRA AND HYBRID MESH.

Number of
grids

Tetrahedral
mesh

Resultant hybrid mesh

Tetra Hex total Hr/T(%
)

Arch 57662 29948 1636 31584 45%

Sphere 65947 25053 3581 28634 56%

Dumbbell 50176 25144 1583 26727 46%

Grail 30888 18557 432 18989 38%
a. Hr is the number of the grids reduced, and T is the number of tetrahedral mesh

FIGURE III. THE GRID OF ARCH WITH DIFFERENT HEXAHEDRA

SIZE. FROM LEFT TO RIGHT: LHEX EQUALS TO 1.00/1.15/1.30
LMIN.

FIGURE IV. THE RATIO OF GRIDS REDUCED ON DIFFERENT SIZE

OF HEXHEDRA EDGE. (LHEX EQUELS TO X * LMIN , AND X IS
THE VALUE OF X-AXIS.)

It is shown that our method can truly generate the
qualified grids and decrease the number of the grid elements,
especially the example of Sphere, where the grids can be
reduced by more than a half. Although the hexahedra are much
less than tetrahedra in each example, they play an important
role in reducing total elements number as they not only can
replace the tetrahedra, but also can reduce the number of points
inside the mesh.

The proportions of the grid elements reduced when the
hexahedra size is different are shown in Fig. 3 and Fig. 4. As
shown from the line chart, as the size of hexahedra extends, the
more grids are reduced. The reason for this phenomenon is that
the extension of the hexahedral size decreases the number of
the interior hexahedra and the candidate points. Besides, as we
can see, our method always reduced more elements for the
example Sphere compared to the Arch. This indicates that
when the models contain larger cavities inside, the algorithm
performs better on the reducing of the mesh quantity.

V. CONCLUSION

In this paper we have presented an automatic hybrid
generation mesh method with the input being a Delaunay
tetrahedral mesh. This method replaces the interior tetrahedra
with regular hexahedra and in the transition region, and it

Advances in Intelligent Systems Research, volume 159

274

connects two triangular faces to a quadrilateral face. Almost
all tetrahedral mesh can be converted to a tetra-hex hybrid
mesh by this method. The elements number of resultant mesh is
reduced significantly and this method can perform much better
on the model with a large cavity.

ACKNOWLEDGMENT

National Natural Science Foundation of China (Grant
61003110) and Fund of the State Key Laboratory of Software
Development Environment (Grant SKLSDE-2010ZX-10)
jointly supported this work.

REFERENCES
[1] K. Ho-Le, “Finite element mesh generation methods: a review and

classification,” Comput.-Aided Des., vol. 20, no. 1, pp. 27–38, 1988.

[2] S. E. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardama, “A
comparison of all hexagonal and all tetrahedral finite element meshes for
elastic and elasto-plastic analysis,” presented at the Proceedings, 4th
International Meshing Roundtable, 1995, vol. 17, pp. 179–191.

[3] J. R. Shewchuk, “Constrained Delaunay Tetrahedralizations and
Provably Good Boundary Recovery.,” presented at the IMR, 2002, pp.
193–204.

[4] S. Lo, “3D Delaunay triangulation of non-uniform point distributions,”
Finite Elem. Anal. Des., vol. 90, pp. 113–130, 2014.

[5] K. NAKAHASHI, “Viscous flow computations using a composite grid,”
presented at the 8th Computational Fluid Dynamics Conference, 1987, p.
1128.

[6] Y. Kallinderis and S. Ward, “Prismatic grid generation with an efficient
algebraic method for aircraft configurations,” presented at the 10th
Applied Aerodynamics Conference, 1992, p. 2721.

[7] S. Yamakawa and K. Shimada, “Converting a tetrahedral mesh to a
prism–tetrahedral hybrid mesh for FEM accuracy and efficiency,” Int. J.
Numer. Methods Eng., vol. 80, no. 1, pp. 74–102, 2009.

[8] R. J. Meyers, T. J. Tautges, and P. M. Tuchinsky, “The" Hex-Tet" Hex-
Dominant Meshing Algorithm as Implemented in CUBIT.,” presented at
the IMR, 1998, pp. 151–158.

[9] S. J. Owen, “Hex-dominant mesh generation using 3D constrained
triangulation,” Comput.-Aided Des., vol. 33, no. 3, pp. 211–220, 2001.

[10] J. Chan, Z. Wang, A. Modave, J.-F. Remacle, and T. Warburton, “GPU-
accelerated discontinuous Galerkin methods on hybrid meshes,” J.
Comput. Phys., vol. 318, pp. 142–168, 2016.

[11] R. Radovitzky and M. Ortiz, “Tetrahedral mesh generation based on
node insertion in crystal lattice arrangements and advancing-front-
Delaunay triangulation,” Comput. Methods Appl. Mech. Eng., vol. 187,
no. 3–4, pp. 543–569, 2000.

Advances in Intelligent Systems Research, volume 159

275

