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Abstract—This paper studies a flexible job shop problem 
with parallel machines considering release time. The objective 
aims to minimize the maximum flow time. A property which can 
reduce the dimension of solution space is proposed. A branch-
and-bound algorithm is proposed to solve the problem. Through 
numerical experiments, the proposed algorithm is proved to be 
both effective and efficient in solving this flexible job shop 
problem. 
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I. INTRODUCTION 

A classic job shop problem (JSP) has a set of jobs 
processed by a set of machines. Each job is processed on 
machines in a given sequence with a given processing time, 
and each machine can process only one type of operation. 
However, along with the rapid industrialization, a machine may 
have the flexible capability to be set up to process more than 
one type of operations in modern manufacturing plant. 
Therefore, a modified version called a flexible JSP (FJSP) is 
generated. Brucker and Schlie (1990) concluded that there are 
two types of FJSP. One is that jobs have alternative operation 
sequences and alternative identical or non-identical machines 
for each operation. This kind of problem aims to determine the 
operation sequences for jobs and the job processing orders on 
machines. The other one is that jobs can have only fixed 
operation sequences but alternative identical or non-identical 
machines for each operation. This kind of problem is to arrange 
jobs to machines according to their fixed operation sequences. 
This paper studies the second kind of problem which arrange 
jobs to alternative identical machines according to their fixed 
operation sequences.  

In this problem, jobs visit a certain machine or a set of 
machines. In addition, each operation is processed by one 
machine and the processing time is the same for any of the 
identical parallel machines. In this paper, a setup depends only 
on the job to be processed and the machine processing it, hence 
the setup time can be seen as included in the processing time. 
The transportation time is ignored in this study. 

In previous articles, the objective always aims to minimize 
the maximum makespan(

maxC ). However, such an objective 

will generate an extreme case that a job with an early release 

time has a late completion time, which means such a job has a 
long flow time and this case seems unreasonable. Therefore, 
we aim to minimize the maximum flow time (

maxF ) in this 

paper. To solve the problem, a branch-and-bound algorithm is 
proposed. 

II. LITERATURE REVIEW 

There are numerous papers studied on FJSP which was first 
proposed by Brucker and Schlie (1990). Brucker and Schlie 
(1990) studied the assignment and scheduling problems in 
FJSP with two jobs and proposed a polynomial algorithm to 
solve it. For the first type FJSP, Baykasoglu (2002) proposed a 
linguistic based meta-heuristic modeling and solution approach 
and Choi and Choi (2002) formulated a mixed-integer model 
and proposed a local search algorithm for alternative operations 
and sequence-dependent setups in various manufacturing 
environments. In order to balance machine loads and minimize 
the makespan and mean flow time, Kim et al. (2003) proposed 
a new approach to solve process planning and scheduling 
problem simultaneously. Later, Chen et al. (2008) developed a 
heuristic algorithm and employed it to solve real industrial 
FJSP. Balin (2011) proposed new operations in genetic 
algorithm (GA) to adapt non-identical parallel machine 
scheduling problem in order to minimum the makespan. Liu et 
al. (2011) presented an adaptive annealing genetic algorithm to 
deal with the job-shop planning and scheduling problem for the 
single-piece, small-batch, custom production mode. Moradi et 
al. (2011) proposed four algorithms to solve FJSP with 
preventive maintenance activities under the multi-objective 
optimization approaches, and the performance of the 
approaches is investigated using a benchmark with a large 
number of test instances.  

For the second type FJSP, Norman and Bean (1999)} 
developed a GA-based approach to minimize total tardiness 
considering some practical constraints. Mastrolilli and 
Gambardella (2000) proposed a neighborhood function using 
tabu search method incorporating two neighborhood functions 
to minimize the makespan. To solve resource-constrained FJSP 
problem with multiple identical machines, Chan et al. (2006) 
proposed a GA-based approach. Chan et al. (2011) presented a 
GA-based job shop scheduler for a flexible multi-product, 
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parallel machine sheet metal job shop with an objective to 
minimum makespan. 

III. NOTATIONS 

A typical FJSP involves a set of jobs, I={1,…,n}, and a set 
of machines M={1,…,m}. A job i I  consists of a sequence of 
operations,  1,...,i

i ijO O O , which must be processed 

consecutively in a fixed order. The parameters are listed as 
follows.  

 total number of jobs 

 indices of jobs 

 total number of operations, we also call it stage

 total number of operations of job  

 indices of operations 

 total number of machines 

 indices of machines 

 sequence of assigned operation on machine 

 release time of job  

 processing time of operation  

IV. ANALYTICAL PROPERTY 

A. Representation of a Solution 

There are m machines in FJSP. The set of these machines is 
defined as M={1,…,m}. The total number of operations is 

i
i

d J . Number these d operations by {1,2,3,...,d}, and 

define the set O={1,2,3,...,d}. The starting time and the release 
time of operation is denoted as t(o) and r(o), respectively. 
Before we describe the analytical property of the problem, the 
representation of the solution is given. Lemma 1 shows the 
proper way to describe one feasible solution. 

Lemma 1. In a FJSP with parallel machines and d 
operations in total, any active schedule can be represented by a 
2d dimensional vector, 

1 1( ,..., , ,..., )d dZ x x y y




where
ox M and 

oy O .
ox  is the machine which processes 

operation o and 
oy is the operation started in the oth order. 

Proof: Integer array 
1( ,..., )dx x  chooses a machine for 

each of the d operations. By given 
1( ,..., )dx x , the machine 

choice of each operation is determined. This will transform our 
FJSP to a JSP. A disjunctive graph can represent a JSP problem. 
For this JSP, an active schedule is represented by a set of 
disjunctive arcs, which describes the starting time priority for 
all operations on each machine. Since integer array 

1( ,..., )dy y  

is the starting time priority sequence for all the operations, so it 
gives a schedule of the JSP. To sum up, 

1 1( ,..., , ,..., )d dx x y y  

can describe all possible machine assignment strategy and all 
active schedules for FJSP. 

B. Analytical Property 

Since we use a 2d dimensional integer valued array to 
describe a solution, the solution space is 2d dimensional. In this 
subsection, we provide an important theorem for this problem, 
with which the dimension of solution space can be reduced to d.  

For a given starting time priority sequence 
1( ,..., )dy y , the 

start time of operation 
oy  is denoted as t(

oy ) and the earliest 

start time of operation 
oy is denoted as 

1( ) max{ ( ), ( )}o o or t r y t y  . 

We define an iterative greedy strategy (IGS) as follows.  

 Start operation 
1y as soon as possible, 

1 1( ) ( )t y r y . 

Choose the machine for operation 
1y  arbitrarily. 

 Given the machine choice and start time for operation 

oy , start operation 
1hy 
 as soon as possible. That is, 

1 1( ) ( )h ht y r y  , and start operation 
1hy 
 when there 

are idle machines for it. Chose machine arbitrarily. 

 Set h=h+1, go to step 2. If h=d, the solution is 
obtained. 

Based on IGS, Theorem 1 is given. 

Theorem 1. For a given priority sequence 
1( ,..., )dy y , IGS 

which start operation as early as possible will contain an 
optimal solution to minimize 

maxF . 

Proof: The proof is shown as follows. 

Case 1. For operation
1y , it's obvious optimal to start it as 

early as possible. And since the idle machines are 
homogeneous, machine choice could be arbitrary. 

Case 2. If operation 
1 1( ,..., )hy y 

are already scheduled. 

Define time point  

max{ ( ), ( )}
hy h ht r y t idlemachineexist for y 

According to Theorem 1, we should start operation 
hy  at 

hyt on an idle machine 
im , that is, let ( )

hh yt y t and 

( )h ix y m . Define a schedule S in which we start operation 

hy  at 
hyt t   on machine 

jm  and the schedule for the follow-

up operations 
1( ,..., )h dy y

is denoted as S1. Assume S is 

optimal. To draw a contradiction, we are going to show that if 
we set ( )

hh yt y t , we will get a better schedule. The proof can 

be shown as in Fig.1. If in schedule S with a objective 
maxF , 

we didn't use the first idle machine. At time 
hyt t  , both 

jm and 
im  are idle. Define schedule S' in which 

hy is 

processed on machine jm , and follow-up schedule S1 is 

adjusted by exchange the machine of 
im  and

jm . Since the 

homogeneity of machine 
im  and 

jm , '
maxF  is the same good 
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as 
maxF . Then we can generate schedule S'' by moving the start 

time of operation 
hy  on jm  forward to 

hyt . Thus, 

'' '
max max maxF F F  . In conclusion, given the priority 

sequence and the schedule for operation 
1 1( ,..., )hy y 

. We can 

obtain an optimal solution by IGS. Thus, Theorem 1 is proved. 

 
FIGURE I.  AN ILLUSTRATION OF PROOF 

According to Theorem 1 for a given priority sequence 

1( ,..., )dy y , we can naturally find one optimal solution by IGS. 

So we do not need to apply a 2d dimensional vector to 
represent the solution in our optimization algorithms. A d 
dimensional vector 

1( ,..., )dy y  which transverse all the feasible 

priority sequence is sufficient. By applying Theorem 1, we 
greatly reduce the solution space we need to search, so the 
following up algorithms based on this fact will be much more 
effective. 

V. BRANCH-AND-BOUND ALGORITHM 

As mentioned above a feasible priority sequence needs to 
satisfy the operation precedence sequence of each job. Here we 
provide a method to use a d dimensional vector 

1( ,..., )dy y  

without any constraint to describe a feasible priority sequence. 
Consider a FJSP with three jobs, three machine groups. 
Operation  is the operation of job i which should be 

processed on machine group j. Let jO  denotes the operation 
set of job i, in which the operations are listed according to 
precedence order. In this case, we have 

1 2 3
11 12 13 22 23 32 31{ , , }, { , }, { , }O O O O O O O O O O   

This parallel machine FJSP could be showed in Fig. 2. 

There are 7 operations in this example, hence the priority 
sequence

1( ,..., )dy y  will include 7 elements. We construct 

three stack S1, S2 and S3. S1, S$ and S3 store 
operation

11 12 13, ,O O O ,
22 23,O O , 

32 31,O O  from top to bottom, 

respectively. We define one pop stack sequence (1,1,1,2,2,3,3). 
This sequence means stack S1 pops three times, then S2 pops 
two times, and finally S3 pops two times. Popping stack 
sequence (1,1,1,2,2,3,3) will generate one feasible priority 
order, which is showed as below. 

11 12 13 22 23 32 31(1,1,1,2,2,3,3) ( , , , , , , )O O O O O O O 

 
FIGURE II.  FJSP WITH THREE JOBS 

If we transverse all the different sequence formulated by 
{1,1,1,2,2,3,3}, we can transverse all the feasible priority order. 
Put it in another way, one feasible solution is described by a 
popping stack sequence like (1,1,1,2,2,3,3). 

Suppose that our problem has a popping stack array A (in 
the previous example A={1,1,1,2,2,3,3}). Branch-and-bound 
algorithm generates a branch tree to enumerate all the different 
permutation of the stack sequence A. The branch tree of stack 
sequence {1,1,1,2,2,3,3} is showed in Fig. 2. 

Note 
xN  means the first three popped stack is S3, S3, and 

S2. So the first three elements in operation priority sequence 
is

32 31 22( , , )O O O . The other 4 elements in the priority sequence 

is not decided yet. According to Theorem 1, the schedule for 

32 31 22( , , )O O O  is naturally decided. Then we need to find the 

lower bound of 
maxF  for node 

xN . For the partially decided 

schedule, let '
iC  denote the completion time of job i' operations 

in the partially decided schedule. Let ( )restP i  denote the sum of 

processing time of the undecided operations of job i. Job i' s 
release time is

ir , then the lower bound of 
maxF  is, 

'
max( ) max { ( ) }i i rest iLB F C P i r   

And the other steps follows the standard branch-and-bound 
method. 

VI. NUMERICAL EXPERIMENTS 

For each test instance, a total of n jobs, m machines and s 
stages are generated. The release time is generated as uniformly 
distributed random numbers on [0,T], where T is the horizon 
time of the release time. The operation number for each job is 
generated as uniformly distributed random numbers [2,s]. The 
operation set is randomly generated and the processing time is 
generated according to the equation 5+10*N(0,1). Finally, all 
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programs are coded in JAVA and run on a computer with a 
CPU of 2.0 GHz and an RAM of size equal to 1.0 GB. 

We compare the computational time between CPLEX and 
the proposed branch-and-bound. We evaluate the performance 
of the proposed branch-and-bound by generating test cases 
characterized by the value of job numbers ({5,8,10}), the value 
of machine numbers ({4,6,8,10}), the value of stage numbers 
({2,3,4,5}) and the value of horizon time (T=10). Thus, with 
the values given, a total of 12 test cases can be generated and 
each case are run 100 times. The summary of these test cases is 
shown in Table 1. In addition, the objective value of CPLEX 
and the proposed branch-and-bound is same, thus, we do not 
display here. 

TABLE I.  COMPARISON BETWEEN CPLEX AND BRANCH-AND-
BOUND 

Parameters Runtimes(ms) 
n m s T CPLEX B&B
5 4 2 10 334 26
5 6 3 10 381 9
5 8 4 10 382 9
5 10 5 10 598 12
8 4 2 10 4761 157
8 6 3 10 15412 1872
8 8 4 10 2467 47
8 10 5 10 13573 93
10 4 2 10 318210 98713
10 6 3 10 33208 1077
10 8 4 10 19573 8910
10 10 5 10 15829 6211

From Table 1, we can find that the computational time of 
the proposed branch-and-bound is always smaller than that of 
CPLEX and results can show that the proposed branch-and-
bound algorithm has a good performance on solving small-
scale problem. 

VII. BRANCH-AND-BOUND ALGORITHM 

This paper studies a FJSP with release time and the 
objective is to minimize the maximum flow time contrary to 
previous papers. Any active feasible solution can be 
represented by a 2d dimensional vector in a FJSP where d is the 
total number of operations. According the specific 
characteristics of the problem, this paper finds a property which 
can reduce the 2d dimension of solution space to d dimension. 
Then several algorithms are proposed to solve different scales 
of the problem. To solve the problem, a branch-and-bound 
algorithm is proposed. Finally, through computational 
experiments, the algorithms are proved to be both effective and 
efficient in solving the FJSP. 

This study can be extended in several directions. A possible 
extension would be the use of other heuristics in the scheduling 
algorithm based on the proposed property. In future works, an 
advanced planning and scheduling which considers the 
capacity and material constraints can be developed. 
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