
Minimizing the Maximum Flow Time for Flexible
Job Shop Problem with Parallel Machines

Considering Release Time

Xi Xiang1, Changchun Liu2 and Lixin Miao1,*
1Division of Logistics and Transportation, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

2Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
*Corresponding author

Abstract—This paper studies a flexible job shop problem
with parallel machines considering release time. The objective
aims to minimize the maximum flow time. A property which can
reduce the dimension of solution space is proposed. A branch-
and-bound algorithm is proposed to solve the problem. Through
numerical experiments, the proposed algorithm is proved to be
both effective and efficient in solving this flexible job shop
problem.

Keywords—flexible job shop problem; parallel machines; flow
time

I. INTRODUCTION

A classic job shop problem (JSP) has a set of jobs
processed by a set of machines. Each job is processed on
machines in a given sequence with a given processing time,
and each machine can process only one type of operation.
However, along with the rapid industrialization, a machine may
have the flexible capability to be set up to process more than
one type of operations in modern manufacturing plant.
Therefore, a modified version called a flexible JSP (FJSP) is
generated. Brucker and Schlie (1990) concluded that there are
two types of FJSP. One is that jobs have alternative operation
sequences and alternative identical or non-identical machines
for each operation. This kind of problem aims to determine the
operation sequences for jobs and the job processing orders on
machines. The other one is that jobs can have only fixed
operation sequences but alternative identical or non-identical
machines for each operation. This kind of problem is to arrange
jobs to machines according to their fixed operation sequences.
This paper studies the second kind of problem which arrange
jobs to alternative identical machines according to their fixed
operation sequences.

In this problem, jobs visit a certain machine or a set of
machines. In addition, each operation is processed by one
machine and the processing time is the same for any of the
identical parallel machines. In this paper, a setup depends only
on the job to be processed and the machine processing it, hence
the setup time can be seen as included in the processing time.
The transportation time is ignored in this study.

In previous articles, the objective always aims to minimize
the maximum makespan(

maxC). However, such an objective

will generate an extreme case that a job with an early release

time has a late completion time, which means such a job has a
long flow time and this case seems unreasonable. Therefore,
we aim to minimize the maximum flow time (

maxF) in this

paper. To solve the problem, a branch-and-bound algorithm is
proposed.

II. LITERATURE REVIEW

There are numerous papers studied on FJSP which was first
proposed by Brucker and Schlie (1990). Brucker and Schlie
(1990) studied the assignment and scheduling problems in
FJSP with two jobs and proposed a polynomial algorithm to
solve it. For the first type FJSP, Baykasoglu (2002) proposed a
linguistic based meta-heuristic modeling and solution approach
and Choi and Choi (2002) formulated a mixed-integer model
and proposed a local search algorithm for alternative operations
and sequence-dependent setups in various manufacturing
environments. In order to balance machine loads and minimize
the makespan and mean flow time, Kim et al. (2003) proposed
a new approach to solve process planning and scheduling
problem simultaneously. Later, Chen et al. (2008) developed a
heuristic algorithm and employed it to solve real industrial
FJSP. Balin (2011) proposed new operations in genetic
algorithm (GA) to adapt non-identical parallel machine
scheduling problem in order to minimum the makespan. Liu et
al. (2011) presented an adaptive annealing genetic algorithm to
deal with the job-shop planning and scheduling problem for the
single-piece, small-batch, custom production mode. Moradi et
al. (2011) proposed four algorithms to solve FJSP with
preventive maintenance activities under the multi-objective
optimization approaches, and the performance of the
approaches is investigated using a benchmark with a large
number of test instances.

For the second type FJSP, Norman and Bean (1999)}
developed a GA-based approach to minimize total tardiness
considering some practical constraints. Mastrolilli and
Gambardella (2000) proposed a neighborhood function using
tabu search method incorporating two neighborhood functions
to minimize the makespan. To solve resource-constrained FJSP
problem with multiple identical machines, Chan et al. (2006)
proposed a GA-based approach. Chan et al. (2011) presented a
GA-based job shop scheduler for a flexible multi-product,

International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 159

208

parallel machine sheet metal job shop with an objective to
minimum makespan.

III. NOTATIONS

A typical FJSP involves a set of jobs, I={1,…,n}, and a set
of machines M={1,…,m}. A job i I consists of a sequence of
operations,  1,...,i

i ijO O O , which must be processed

consecutively in a fixed order. The parameters are listed as
follows.

 total number of jobs

 indices of jobs

 total number of operations, we also call it stage

 total number of operations of job

 indices of operations

 total number of machines

 indices of machines

 sequence of assigned operation on machine

 release time of job

 processing time of operation

IV. ANALYTICAL PROPERTY

A. Representation of a Solution

There are m machines in FJSP. The set of these machines is
defined as M={1,…,m}. The total number of operations is

i
i

d J . Number these d operations by {1,2,3,...,d}, and

define the set O={1,2,3,...,d}. The starting time and the release
time of operation is denoted as t(o) and r(o), respectively.
Before we describe the analytical property of the problem, the
representation of the solution is given. Lemma 1 shows the
proper way to describe one feasible solution.

Lemma 1. In a FJSP with parallel machines and d
operations in total, any active schedule can be represented by a
2d dimensional vector,

1 1(,..., , ,...,)d dZ x x y y




where
ox M and

oy O .
ox is the machine which processes

operation o and
oy is the operation started in the oth order.

Proof: Integer array
1(,...,)dx x chooses a machine for

each of the d operations. By given
1(,...,)dx x , the machine

choice of each operation is determined. This will transform our
FJSP to a JSP. A disjunctive graph can represent a JSP problem.
For this JSP, an active schedule is represented by a set of
disjunctive arcs, which describes the starting time priority for
all operations on each machine. Since integer array

1(,...,)dy y

is the starting time priority sequence for all the operations, so it
gives a schedule of the JSP. To sum up,

1 1(,..., , ,...,)d dx x y y

can describe all possible machine assignment strategy and all
active schedules for FJSP.

B. Analytical Property

Since we use a 2d dimensional integer valued array to
describe a solution, the solution space is 2d dimensional. In this
subsection, we provide an important theorem for this problem,
with which the dimension of solution space can be reduced to d.

For a given starting time priority sequence
1(,...,)dy y , the

start time of operation
oy is denoted as t(

oy) and the earliest

start time of operation
oy is denoted as

1() max{ (), ()}o o or t r y t y  .

We define an iterative greedy strategy (IGS) as follows.

 Start operation
1y as soon as possible,

1 1() ()t y r y .

Choose the machine for operation
1y arbitrarily.

 Given the machine choice and start time for operation

oy , start operation
1hy 
 as soon as possible. That is,

1 1() ()h ht y r y  , and start operation
1hy 
 when there

are idle machines for it. Chose machine arbitrarily.

 Set h=h+1, go to step 2. If h=d, the solution is
obtained.

Based on IGS, Theorem 1 is given.

Theorem 1. For a given priority sequence
1(,...,)dy y , IGS

which start operation as early as possible will contain an
optimal solution to minimize

maxF .

Proof: The proof is shown as follows.

Case 1. For operation
1y , it's obvious optimal to start it as

early as possible. And since the idle machines are
homogeneous, machine choice could be arbitrary.

Case 2. If operation
1 1(,...,)hy y 

are already scheduled.

Define time point

max{ (), ()}
hy h ht r y t idlemachineexist for y 

According to Theorem 1, we should start operation
hy at

hyt on an idle machine
im , that is, let ()

hh yt y t and

()h ix y m . Define a schedule S in which we start operation

hy at
hyt t  on machine

jm and the schedule for the follow-

up operations
1(,...,)h dy y

is denoted as S1. Assume S is

optimal. To draw a contradiction, we are going to show that if
we set ()

hh yt y t , we will get a better schedule. The proof can

be shown as in Fig.1. If in schedule S with a objective
maxF ,

we didn't use the first idle machine. At time
hyt t  , both

jm and
im are idle. Define schedule S' in which

hy is

processed on machine jm , and follow-up schedule S1 is

adjusted by exchange the machine of
im and

jm . Since the

homogeneity of machine
im and

jm , '
maxF is the same good

Advances in Intelligent Systems Research, volume 159

209

as
maxF . Then we can generate schedule S'' by moving the start

time of operation
hy on jm forward to

hyt . Thus,

'' '
max max maxF F F  . In conclusion, given the priority

sequence and the schedule for operation
1 1(,...,)hy y 

. We can

obtain an optimal solution by IGS. Thus, Theorem 1 is proved.

FIGURE I. AN ILLUSTRATION OF PROOF

According to Theorem 1 for a given priority sequence

1(,...,)dy y , we can naturally find one optimal solution by IGS.

So we do not need to apply a 2d dimensional vector to
represent the solution in our optimization algorithms. A d
dimensional vector

1(,...,)dy y which transverse all the feasible

priority sequence is sufficient. By applying Theorem 1, we
greatly reduce the solution space we need to search, so the
following up algorithms based on this fact will be much more
effective.

V. BRANCH-AND-BOUND ALGORITHM

As mentioned above a feasible priority sequence needs to
satisfy the operation precedence sequence of each job. Here we
provide a method to use a d dimensional vector

1(,...,)dy y

without any constraint to describe a feasible priority sequence.
Consider a FJSP with three jobs, three machine groups.
Operation is the operation of job i which should be

processed on machine group j. Let jO denotes the operation
set of job i, in which the operations are listed according to
precedence order. In this case, we have

1 2 3
11 12 13 22 23 32 31{ , , }, { , }, { , }O O O O O O O O O O   

This parallel machine FJSP could be showed in Fig. 2.

There are 7 operations in this example, hence the priority
sequence

1(,...,)dy y will include 7 elements. We construct

three stack S1, S2 and S3. S1, S$ and S3 store
operation

11 12 13, ,O O O ,
22 23,O O ,

32 31,O O from top to bottom,

respectively. We define one pop stack sequence (1,1,1,2,2,3,3).
This sequence means stack S1 pops three times, then S2 pops
two times, and finally S3 pops two times. Popping stack
sequence (1,1,1,2,2,3,3) will generate one feasible priority
order, which is showed as below.

11 12 13 22 23 32 31(1,1,1,2,2,3,3) (, , , , , ,)O O O O O O O 

FIGURE II. FJSP WITH THREE JOBS

If we transverse all the different sequence formulated by
{1,1,1,2,2,3,3}, we can transverse all the feasible priority order.
Put it in another way, one feasible solution is described by a
popping stack sequence like (1,1,1,2,2,3,3).

Suppose that our problem has a popping stack array A (in
the previous example A={1,1,1,2,2,3,3}). Branch-and-bound
algorithm generates a branch tree to enumerate all the different
permutation of the stack sequence A. The branch tree of stack
sequence {1,1,1,2,2,3,3} is showed in Fig. 2.

Note
xN means the first three popped stack is S3, S3, and

S2. So the first three elements in operation priority sequence
is

32 31 22(, ,)O O O . The other 4 elements in the priority sequence

is not decided yet. According to Theorem 1, the schedule for

32 31 22(, ,)O O O is naturally decided. Then we need to find the

lower bound of
maxF for node

xN . For the partially decided

schedule, let '
iC denote the completion time of job i' operations

in the partially decided schedule. Let ()restP i denote the sum of

processing time of the undecided operations of job i. Job i' s
release time is

ir , then the lower bound of
maxF is,

'
max() max { () }i i rest iLB F C P i r   

And the other steps follows the standard branch-and-bound
method.

VI. NUMERICAL EXPERIMENTS

For each test instance, a total of n jobs, m machines and s
stages are generated. The release time is generated as uniformly
distributed random numbers on [0,T], where T is the horizon
time of the release time. The operation number for each job is
generated as uniformly distributed random numbers [2,s]. The
operation set is randomly generated and the processing time is
generated according to the equation 5+10*N(0,1). Finally, all

Advances in Intelligent Systems Research, volume 159

210

programs are coded in JAVA and run on a computer with a
CPU of 2.0 GHz and an RAM of size equal to 1.0 GB.

We compare the computational time between CPLEX and
the proposed branch-and-bound. We evaluate the performance
of the proposed branch-and-bound by generating test cases
characterized by the value of job numbers ({5,8,10}), the value
of machine numbers ({4,6,8,10}), the value of stage numbers
({2,3,4,5}) and the value of horizon time (T=10). Thus, with
the values given, a total of 12 test cases can be generated and
each case are run 100 times. The summary of these test cases is
shown in Table 1. In addition, the objective value of CPLEX
and the proposed branch-and-bound is same, thus, we do not
display here.

TABLE I. COMPARISON BETWEEN CPLEX AND BRANCH-AND-
BOUND

Parameters Runtimes(ms)
n m s T CPLEX B&B
5 4 2 10 334 26
5 6 3 10 381 9
5 8 4 10 382 9
5 10 5 10 598 12
8 4 2 10 4761 157
8 6 3 10 15412 1872
8 8 4 10 2467 47
8 10 5 10 13573 93
10 4 2 10 318210 98713
10 6 3 10 33208 1077
10 8 4 10 19573 8910
10 10 5 10 15829 6211

From Table 1, we can find that the computational time of
the proposed branch-and-bound is always smaller than that of
CPLEX and results can show that the proposed branch-and-
bound algorithm has a good performance on solving small-
scale problem.

VII. BRANCH-AND-BOUND ALGORITHM

This paper studies a FJSP with release time and the
objective is to minimize the maximum flow time contrary to
previous papers. Any active feasible solution can be
represented by a 2d dimensional vector in a FJSP where d is the
total number of operations. According the specific
characteristics of the problem, this paper finds a property which
can reduce the 2d dimension of solution space to d dimension.
Then several algorithms are proposed to solve different scales
of the problem. To solve the problem, a branch-and-bound
algorithm is proposed. Finally, through computational
experiments, the algorithms are proved to be both effective and
efficient in solving the FJSP.

This study can be extended in several directions. A possible
extension would be the use of other heuristics in the scheduling
algorithm based on the proposed property. In future works, an
advanced planning and scheduling which considers the
capacity and material constraints can be developed.

REFERENCES
[1] Balin, S. Non-identical parallel machine scheduling using genetic

algorithm. Expert Systems with Applications, 2011, 38(6), 6814-6821.

[2] Baykasoglu, A. Linguistic-based meta-heuristic optimization model for
flexible job shop scheduling. International Journal of Production
Research,2002, 40(17), 4523-4543.

[3] Brucker, P., & Schlie, R. (1990). Job-shop scheduling with multi-
purpose machines. Computing, 1990, 45(4), 369-375.

[4] Chan, F. T. S., Wong, T. C., & Chan, L. Y. Flexible job-shop scheduling
problem under resource constraints. International Journal of Production
Research, 2006, 44(11), 2071-2089.

[5] Chan, F. T. S., Choy, K. L., & Bibhushan. A genetic algorithm-based
scheduler for multiproduct parallel machine sheet metal job shop. Expert
Systems with Applications, 2011, 38(7), 8703-8715.

[6] Chen, J. C., Chen, K. H., Wu, J. J., & Chen, C. W. A study of flexible
job shop scheduling problem with parallel machine and reentrant process.
International Journal of Advanced Manufacturing Technology, 2008, 39,
344-354.

[7] Choi, I. C., & Choi, D. S. A local search algorithm for jobshop
scheduling problems with alternative operations and sequence-dependent
setups. Computers and Industrial Engineering, 2002, 42(1), 43-58.

[8] Kim, Y. K., Park, K., & Ko, J. A symbiotic evolutionary algorithm for
the integration of process planning and job shop scheduling. Computers
and Operations Research. 2003, 30(8), 1151-1171.

[9] Liu, M., Sun, Z. J., Yan, J. W., & Kang, J. S. An adaptive annealing
genetic algorithm for the job-shop planning and scheduling problem.
Expert Systems with Applications. 2011, 38(8), 9248-9255.

[10] Mastrolilli, M., & Gambardella, L. M. Effective neighbourhood
functions for the flexible job shop problem. Journal of Scheduling. 2000,
3(1), 3-20.

[11] Moradi, E., Ghomi, S. M. T. F., & Zandieh, M.. Bi-objective
optimization research on integrated fixed time interval preventive
maintenance and production for scheduling flexible job-shop problem.
Expert Systems with Applications. 2011, 38(6), 7169-7178

[12] Norman, B. A., & Bean, J. C. A genetic algorithm methodology for
complex scheduling problems. Naval Research Logistics. 1999, 46(2),
199-211.

Advances in Intelligent Systems Research, volume 159

211

