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Abstract—Missing outcome data occurs often in the causal 
inference of observational studies. For example, in observational 
study on the safety of a Traditional Chinese Medicine (TCM) 
injection in market, some patients are missing safety outcome 
variables. In this paper we proposed a consistent estimator for 
the average treatment effect (ATE) with partially missing 
outcome data and derived the asymptotic variance of the 
proposed ATE estimator under the condition that the missing-
data mechanism is missing at random (MAR). We then 
proceeded to assess the performance of the asymptotic variance 
estimator via a simulation study. The simulation study showed 
that the asymptotic variance estimator had good performance in 
finite sample sizes. This asymptotic variance could then be used 
to construct a confidence interval for the average treatment 
effect. We also compared the bias and mean squared error (MSE) 
of the ATE estimators based on the proposed method-dealing 
with the missing outcomes with that of the complete-data method, 
which means that directly deleting the samples with the missing 
data through a simulation study. The simulation study showed 
that the MSE and Bias of our method were smaller than the 
complete-data method under MAR. In addition, we also found 
that coverage of the confidence interval constructed on the ATE 
and its asymptotic variance from our method are better than 
those based on the traditional method.  

Keywords—average treatment effects (ATE); asymptotic 
variance; delta-method; missing data 

I. INTRODUCTION 

Recently, there has been a surge in theoretical work 
focusing on estimating ATE without missing outcome data. 
For estimation of the ATE, various semi-parametric 
estimation methods have been proposed, including the 
regression methods (Heckman  et al., 1997; Hahn, 1998; 
Imbens  et al., 2003)methods using the propensity score such 
as weighting (Hirano et al., 2003), matching on covariates 
(Rosenbaum, 1995; Abadie and Imbens, 2002), blocking 
(Rosenbaum  and Rubin, 1984), and combinations of those 
approaches(Graf, 1997).  

The propensity score methodology is the most commonly 
used method among the aforementioned approaches. Hirano et 
al. (2003) gave the most complete theory on the use of the 
propensity score methodology when the propensity score is 
estimated. Montes-Rojas (2009) derived the asymptotic 
variance of the ATE estimator with the propensity score is 
estimated by the M-estimator using the Delta method 
(Wooldridge, 2002). In practice, this asymptotic variance can 
be used to measure the accuracy of the ATE estimators and to 
construct confidence interval for the ATE. 

There can be a large amount of missing data in 
observational studies of medicine, however. For example, in 
the observational study on the safety of a Traditional Chinese 
Medicine (TCM) injection, some patients are missing safety 
outcome variables.  

In cases where some subject outcomes are missing, the 
most commonly used technique to estimate the ATE and its 
associated variance is to exclude subjects with missing 
outcomes, then perform analysis of the remaining data. This 
approach is called a complete-case analysis.  

When subjects with any missing outcomes are excluded, it 
is well known that a complete-case analysis can give highly 
inefficient estimators and potentially biased results. Thus, the 
method of directly deleting missing data will result in a 
significant loss of information.  

Among various kinds of method for dealing with missing 
data, one common method is the inverse probability weighting 
method (IPW). Since Horvitz and Thompson (1952) first 
proposed to use this method to estimate population mean with 
nonrandomized missing data mechanisms in 1952, in effect, 
this approach did not get widely used for a very long time. 

It was not until the end of the twentieth Century that this 
approach has become popular when Robins and Rotnitzky 
(1995) proved that the inverse probability weighting estimator 
is a consistent and asymptotically normal estimator in a 
multivariate regression model and proposed a modified IPW 
estimator (Little, 1995). Wooldridge (2002) proposed the 
inverse probability weighted minimization estimator in order 
to analyze no-response questions in the investigation of a 
period or multi period (Little and Rubin, 1987). Carpenter et 
al. (2005) proved that the IPW estimator with double 
robustness through the empirical analysis (Ralph, 2000). 
These results make IPW method has received more and more 
attention. 

To increase efficiency and reduce the bias, it is necessary 
to develop methods that incorporate the partially missing 
outcome data into the analysis. In this paper, we propose a 
method by providing formulas that can estimate ATE and its 
associated variance with missing outcome data. The proposed 
method is under the missing at random (MAR) assumption, 
which implies that the missing-data process can depend only 
on the observed covariates, but not on the missing outcome 
(Little, 1995; Little and Rubin, 1987; Ralph, 2000; Rubin, 
1976). We propose a new ATE estimator under the MAR 
condition and prove that the new estimator was consistent. We 
also extend the asymptotic variance formula of the ATE 
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estimator on complete data by Montes-Rojas (2009) and 
derived the asymptotic variance formula of the ATE estimator 
on non-complete data with missing outcomes. 

Our simulation study demonstrates the high accuracy of 
the proposed method in estimating the ATE and its asymptotic 
variance. In this paper, we also apply the proposed method to 
a post-surveillance TCM study.  The paper is organized as 
follows. Section 2 provides notation and derives the ATE 
estimators with partially missing outcome data. Section 3 
derives the asymptotic variance of the ATE estimators under 
the condition that missing-data mechanism is MAR. Section 4 
evaluates the accuracy of the resulting asymptotic variance 
formula by comparing the empirically estimated variance with 
the variance estimate derived using the asymptotic formula in 
a simulation study and compares the MSE of the ATE 
estimators between the proposed method that addresses the 
missing outcomes and the conventional method that deletes 
the samples with the missing data. Then, we also compare the 
confidence interval coverage constructed by two different 
methods. We give some remarks and conclusion in Section 5. 

II. AVERAGE TREATMENT EFFECT ESTIMATORS WITH 

MISSING OUTCOME DATA 

In this section we derive the ATE estimators with partially 
missing outcome data. We follow the standard notation in 
Imbens (2004) and Montes-Rojas (2009). Consider N  
individuals indexed by 1, ,i N K  , who may receive a 
certain “treatment”, indicated by the binary 

variable 0,1iW   . Each individual has a pair of potential 

outcomes (Y0i, Y1i) that corresponds to the outcomes that the 
individual would have been observed with and without the 
receipt of the treatment, respectively.  

The fundamental problem of causal inference is the 
inability to observe at the same time the outcomes of the same 
individual both with and without the receipt of treatment 
effects. That is, we can only observe 

 1 01i i i i iY WY W Y    and a set of exogenous 

covariates iX  . We define the propensity score 

as    1i i i ip X p W X x    . We are interested in 

estimating the ATE, defined as  1 0i iE Y Y   . In 

addition, we let iR  denote a dummy variable such that  

0iR    when the outcome of the ith individual is missing; 

and  1iR    otherwise. We extend the idea in Montes-Rojas 

(2009) and derive the ATE estimators under the condition that 
the missing-data mechanism is MAR. To derive our 
estimators, we need to make the following assumptions. 

Assumption 1  0 1ip X  . 

This assumption means that each individual in the 
population has a positive probability of receiving either 
treatment. In the study, the propensity score is usually 
obtained from logistic regression. As long as we focus on the 

distribution of the propensity score, we may assess that 
whether the assumption 1 is feasible.  

Assumption 2  0 1,i i i i iR W Y Y X  . 

This assumption says that 1iY  and 0iY  are independent of 

,i iW R given iX .This assumption ensures that we can 

stratified according to known covariates, and the causal effect 
of each layer is identifiable, similar to the negligible 
assumption for a complete data (Rosenbaum and Rubin1983). 
For the actual data, how do we verify that it meets this 
assumption? This depends on the background of the actual 
data. We generally based on the background of the data to 
determine the missing mechanism. As the examples in this 
article shows, we can consider the missing mechanism as 
missing at random. Thus, the missing indicator variables are 
independent with missing outcome variable, given the value 

of the covariates. This can be expressed as i i iR Y X  . Since 

 1 01i i i i iY WY W Y   , so apparently we can get 

i i iR W X   and  0 1,i i i iR Y Y X  . 

Next, as long as we can verify  0 1,i i i iW Y Y X , we 

can determine that whether the assumption 2 is satisfied. The 
verification for this assumption is similar to the negligible 
assumption for a complete data. The difference between the 
two is that the data we are concerned is a data with missing 
outcome variable. The approach used in this paper is the 
inverse probability weighting method. 

Proposition 1. Under Assumptions 1 and 2 and the 
condition that the missing- data mechanism is MAR, we can 
write    as the expected value of a weighted equation.  

The average treatment effect in the presence of missing 
outcome data can be written as follows:  

 

The proof of this proposition is given in Appendix. 

Based on the result in Proposition 1, we propose the 
following consistent estimator for  , when the missing 
outcome data mechanism is MAR: 

   
 

    
1

1

1ˆ
1 1 1

N
i i ii i i

i i i i i i i

R W YRWY
N

p X p R X p X p R X
 



 
  

    




When propensity score and missing-data mechanism are 
known, we can prove that the estimator from equation (1) is 
an unbiased estimator for the ATE by the property of an 
identically independent sample.  

It is noteworthy that in equation (1) the propensity score 
and missing-data mechanisms are usually unknown, and they 
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need to be estimated by means of a parameter model (such as 
logit or probit). It can be easily shown that the proposed 
estimator in equation (1) is a consistent estimator of ATE 
when the parameters in the propensity score are estimated by 
an M-estimator and the parameters in the missing-data 
mechanisms are also estimated by an M-estimator. 

III. THE ASYMPTOTIC VARIANCE OF AVERAGE TREATMENT 

EFFECT ESTIMATORS WITH MISSING OUTCOME DATA 

In practice, the propensity score  ip X  is usually 

unknown and need to be estimated based on data. Here we 
assume that , 

where *  denotes the true value of the parameters   , in 
the propensity score.  

Here we let
ˆ̂  denote a two-step estimator of   . This 

means that the parameters  in the propensity score are 

estimated using the M-estimator ̂  . Generally, the M-
estimator can be defined to be a zero of an estimating function 
(Van de Geer, 2000). This estimating function is the 
derivative of another statistical function. For example, a 
maximum-likelihood estimate is often defined to be a zero of 
the derivative of the likelihood function with respect to the 
parameter. Thus, a maximum-likelihood estimator is often a 
critical point of the score function (Ferguson, 1982).  

Here    is estimated via equation (1) with  ip X   being 

replaced by  ˆ;iX   . We also let *  denote the true value 

of . 

Next, we deal with the situation where the missing-data 
mechanism is MAR. In this case, we also need to model the 

missing data mechanism,  1i ip R X . 

We assume that    *1 = ;i i ip R X X  , where *  

represents the true value of   , and    denotes parameters 

to be estimated in the missing-data mechanism. Let ̂   be the 

M-estimator of  , based on the above parametric model for 

 1i ip R X . 

Let 
ˆ̂
̂   denote a three-step ATE  estimator of *   that is 

given by formula  1  with both   and    being replaced by 

the M-estimators ̂   and ̂  , respectively. 

A. Theorem 1 

When the missing-data mechanism is MAR, under the 

conditions that  ip X  can be estimated via a parameter 

model, we can derive the asymptotic variance of ATE  
estimator as follows: 

     

*

* * * * *

ˆ̂
ˆlim

lim , , , ; , , , , ;

N

i i i i i i i
N

VAR N

VAR Y W R X T D W R X

 

     





  
  

   
   

 

Where  

*
*

*





 

  
 

 , 

 

   
 
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   
 

     

* *

*

*

* * * *
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1

1 1 1

1

; ; 1 ; ;
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R W YRWY

p X p R X p X p R X

R W YRWY

X X X X
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


     


  

  


  
  

 

   * * * *, , , , ; ,i i i iT E Y W R X         

And  *, , ;i i iD W R X   is the influence function of an 

M-estimator for the parameters   when    is equal to the 

true value * . 

The proof of this theorem is given in the Appendix. 

In practice, a consistent estimator of this asymptotic 
variance can be obtained by the sample version: 

 

*

2

1

1

ˆ̂
ˆ.

ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ, , , ; , , , , ;
N

i i i i i i i
i

Est VAR N

N Y W R X T D W R X

 

     



  
  

   

    
     

     




In the actual analysis, if the propensity score is estimated 
by the logistic regression, the estimated value of the 

propensity score can be expressed as  
1

X

X

e
p X

e






 ; the 

missing mechanism can also be estimated by the logistic 

regression that can be expressed as  1
1

X

X

e
p R X

e



 


. 

Then, we can get that 
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Here putting 

ˆ
ˆ

ˆ






 
  
 

 

 

 

 

ˆ

ˆ

ˆ, , ;

ln 1 ln 1
1 1

ln 1 ln 1
1 1

i i

i i

i i

i i

i i i

X X

i iX X

X X

i iX X

D W R X

e e
W W

e e

e e
W W

e e

 

  

 

 

  

 







   
          
 
   
           

  

And into the equation (2), we can get the asymptotic 
variance of the ATE estimation constructed by the formula (1). 
With estimator and its asymptotic variance, we can construct 
confidence intervals. The confidence interval of the real value 
of the ATE  for the nominal level of 100 %   confidence 

can be expressed as
2

ˆ̂
ˆ Z

N


   , where   represents the 

estimated standard deviation for ATE estimation. 

IV. SIMULATION STUDY 

A. Simulation Setup 

We conducted a simulation study to assess the 
performance of the proposed ATE estimator, called Method I, 
and its asymptotic variance formula in finite sample sizes. 

We also compared the performance of Method I with the 
complete-data method, which deleted subjects with the 
missing data and then applied the methods of Hirano et al. 
(2003) and Montes-Rojas (2009) with the remaining complete 
data to estimate the ATE and computed the associated 
variance estimate. We call the conventional method Method II. 

The simulation study used six covariates and 1000 
randomly generated data sets for each of the three parameter 
configurations to be given in Table 1 below. The sample size 
for each simulated data set was set to be 1000, 2000 and 5000, 

respectively. All statistical analyses were conducted using 
SAS software, version 9.2. 

The parameters were set up as follows: 

First, we generated the six covariates 

 1 2 3 4 5 6, , , , ,X X X X X X . The covariate 1X   and 2X  

were drawn from the normal distribution with the mean and 

variance,  2
1 1 ，  and  2

2 2 ， , respectively. The 

covariates 3 4 5 6, , ,X X X X  were drawn from a Bernoulli 

distribution with 3 4 5 6, , ,p p p p  , respectively.  

We chose three different parameter settings for the 
parameters, , 

And those values are listed in Table I. 

TABLE I. PARAMETER SETTINGS FOR SIMULATION 

Settings                                                    
1             1       0.010   0.600   0.040        0.200   0.800   0.300   
0.600 0.600 
2             1       0.010   0.600   0.040        0.200   0.600   0.250   
0.400 0.400 

Second, we generated two potential outcomes 1Y  and 0Y  

for each subject in the sample according to the following 
model: 

 

Where 

 

And j  was drawn from the normal distribution with 

0   and 2 1    

Third, the treatment assignment W  for each subject was 
generated by the following model: 

, 

Where 

 

The value of the generated W for a subject determines 
which of the two potential outcomes, 1Y  and 0Y , is observed 

for this subject. If W=1, 1Y  is observed, and if W=0, 0Y  is 

observed. 

Up to this point, we have randomly generated complete 
data sets under the three different parameter configurations. 
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Fourth, we generated the missing outcomes, according to 
the MAR missing data. Under the MAR missing data 
mechanism, we generated a missing-data indicator for each 
subject, R  , from a Bernoulli distribution with the following 
event probability with covariates : 

, 

Where
. 

For each of the three parameter configurations, we 
repeated the above process 1000 times. Then, we got 1000 
randomly generated data sets under each of the three 
parameter settings.  

To evaluate the effect of the sample size on the accuracy 
of the estimated variance of the ATE estimator, we further 
considered four different sample sizes, 1000, 2000 and 5000, 
for each of the three parameter settings in Table I. 

B. Performance Measures 

For comparison of point estimators for the ATE, we used 
bias and mean squared error (MSE). We define these 
quantities below. 

Let 
ˆ̂
ˆ
m  and ˆ

mZ  be the estimates for theATE, * , derived 

using the proposed method and the complete case method, 
respectively, using the mth simulated data set. Then, the 
biases of these ATE estimators are given, respectively, as 
follows: 

    

The MSE of the ATE estimators are given, respectively, as 
follows: 

 

 

We assessed the performance of the asymptotic variance 
estimator of the ATE, by comparing it with the empirical 
variances estimators. 

For the estimator for the ATE proposed in this paper, the 
empirical variance is defined as follows: 

 

The derived asymptotic variance formula in this article is 
as follows: 

 

C. Simulation Results 

The simulation results are summarized in Table II and 
Table III. 

TABLE II. SIMULATION RESULTS: EMPIRICAL VARIANCE VS. 
VARIANCE USING THE FORMULA 

Parameter 
setting 

Sample 
Size 

Empirical 
variance(S2) 

Variance using the 
formula 

1 1000 0.025297 0.027354 
2000 0.011545 0.011372 

5000 0.004210 0.004283 
1000 0.021957 0.022679 

2 2000 0.009939 0.009979 
5000 0.003447 0.003763 

TABLE III. SIMULATION RESULTS: BIAS AND MSE OF ATE 
ESTIMATOR 

Parameter 
setting 

Sample Size Method 
  

1 1000 Ⅰ -0.006010 0.025308 

Ⅱ -0.008010 0.033745 
2000 
 

Ⅰ 0.002377 0.011539 

Ⅱ 0.003405 0.015930 
 5000 Ⅰ 0.000463 0.004206 

Ⅱ 0.000545 0.005628 
2 1000 Ⅰ -0.000850 0.021935 

Ⅱ -0.002990 0.031240 
2000 Ⅰ 0.002734 0.009936 

Ⅱ 0.004447 0.013400 
5000 Ⅰ 0.000445 0.003443 

Ⅱ 0.000990 0.004453 

TABLE IV. COVERAGE PROBABILITIES OF THE 95% 
CONFIDENCE INTERVALS 

Parameter 
setting 

Sample 
Size 

Method Coverage probabilities 

 
1 

1000 Ⅰ 0.946 

Ⅱ 0.893 
 2000 Ⅰ 0.948 

Ⅱ 0.904 
5000 Ⅰ 0.954 

Ⅱ 0.904 
2 1000 Ⅰ 0.951 

Ⅱ 0.890 
2000 Ⅰ 0.955 

Ⅱ 0.885 
5000 Ⅰ 0.960 

Ⅱ 0.897 

Note: *Method I, calculated with the formula constructed 
in this paper; 

 #Method II, calculated by the method of directly deleting 
samples with missing outcomes. 

By comparing the empirical variance with the variances 
obtained with the formula in Table II, we can conclude that 
the asymptotic variance formula of the proposed ATE 
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estimator under MAR missing data provides an accurate 
variance estimation of the estimated ATE. 

In addition, from the bias and MSE results of the ATE 
estimators in Table III, we can conclude that the proposed 
method in this paper (Method I) outperforms the complete 
case method (the method of directly deleting patients with 
missing outcomes).We can also see from Table IV that 
coverage of the confidence interval constructed on the ATE 
and its asymptotic variance from method I with 95% 
confidence level is greater than that based on the traditional 
method. Moreover, the explicit variance estimator for the 
proposed ATE estimator also performs well in the sample 
sizes considered in the simulation study.  

V. CONCLUSION AND DISCUSSION 

For the analysis of observational data with a partially 
missing outcome variable, in this article we proposed an 
estimator for the ATE when the missing outcome is MAR, 
and also derived the associated variance formula. Furthermore, 
we verified the accuracy of the variance formula via the 
simulation study. The advantage of having a variance formula, 
such as this, is simple to calculate the variance estimate in 
practice. We compared the proposed method with the 
commonly used complete-case method and showed our 
method outperforms the commonly used method. 

In this paper, we used a parametric model to estimate the 
propensity score and the missing-data mechanism. The 
disadvantages of using the parametric model are that 
modeling needs to be based on certain assumptions. A further 
research idea might be to relax these parametric model 
assumptions by using non-parametric models for the 
propensity score with the missing-data outcome data. 

In other words, we first estimated propensity score with 
missing outcome data, and then get the estimator of ATE by 
inverse probability weighting. Furthermore, we can also use 
variance formula given in this paper to estimate the variance 
estimators of the ATE. So that we can make a reasonable 
statistical inference and this inference has very important 
reference value in practical research. It is worth mentioning 
that the assumption required by using the method of this 
article is relatively relaxed. From the practical examples given 
in this paper, we know that in the observational data analysis, 
assumption 1 generally can be met and assumption 2 is also 
possible to meet depends on the missing data mechanism. We 
can also say that whether the missing data mechanism satisfies 
MAR is important for assumption 2. Of course, we need to 
make a judgment based on a medical background in the actual 
study. In short, the method presented in this paper has a 
certain value. 
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