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Abstract

This study addresses the construction of Takagi-Sugeno-Kang (TSK) fuzzy models by means of cluster-
ing. A contribution-factor based fuzzy min-max neural network (CFMN) is developed based on Simpson’s
well-known fuzzy min-max neural network (FMNN) for clustering. The contribution-factor (CF) is also
known as the typical pattern, and the membership threshold above which a pattern can be a CF of a clus-
ter can be specified by the user. The stability issue is addressed and unnecessary overlaps in FMNN can
be avoided. Furthermore, two considerations are combined in the clustering process to fully exploit the
information in the data: 1) patterns (points) are generated in a sequence, so it’s reasonable to capture the
order-dependent information of data, and 2) the clustering process shouldn’t be influenced too much by
noisy data or outliers. As a result, CFMN can put most cluster centers in high-density regions of clusters
without influence of the low-density regions. This feature is very important when clusters are used as
fuzzy rules because the high-density region of some cluster can be interpreted as the most common part
of that rule. Simulations are performed to illustrate the clustering behavior of CFMN and identification
performance of the resulting fuzzy inference system (CFMN-FIS). It is shown that the proposed algorithm
is fast to learn and has good prediction performance.

Keywords: fuzzy min-max neural network, clustering, adaptive resonance theory, contribution-factor,
order-dependent, fuzzy inference system

1. Introduction

Fuzzy identification is an effective tool for the ap-
proximation of uncertain nonlinear systems on the
basis of measured data. The data driven construc-
tion of fuzzy models has become an important topic
of research with a wide range of real-world appli-
cations. The Takagi-Sugeno-Kang (TSK)1 model
is a method of fuzzy inference well known in the

fuzzy systems literature. The great advantage of the
TSK model is its representative power. It is capa-
ble of describing a highly nonlinear system using
a small number of rules2. Generally, fuzzy system
identification consists of structure identification and
parameter learning. Structure identification is used
to determine the fuzzy membership functions and
the appropriate number of rules. Parameter learning
concerns the calculation of coefficients of each rule.
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As to the TSK model, the structure identification is
based on a fuzzy partition of the input space and
the parameter learning can be performed by stan-
dard linear least-squares methods when the premise
parameters are fixed.

One of the most common approaches to structure
identification is the utilization of clustering analysis.
As defined in Ref. 3, the goal of clustering analysis
is to discover natural groups of a set of points ac-
cording to intrinsic characteristics or similarity. In
other words, clustering divides data into groups, in
such a manner that similar instances are grouped in
the same group, producing a concise representation
of a system’s behavior4. Moreover, groups can be
used to establish some hypothesis about the structure
present in the data. Compared with other classical
methods of membership functions identification that
are complex or computationally demanding, for ex-
ample, gradient descent5, genetic algorithms6, and
Kalman filtering7, clustering can be used to make
groups of related data and reduce the complexity of
the model when we have a lot of data and we have
no more information about it8.

Although many clustering algorithms have been
used for fuzzy modeling491011, there are two consid-
erations that have not been combined to fully exploit
the information in the data.

1. Most of the clustering algorithms proposed
in the literature didn’t consider the order-
dependent information. As the patterns
(points) are generated by the underlying sys-
tem in a sequence, not in a bunch, it’s reason-
able to capture the order-dependent informa-
tion of data. In fuzzy system identification,
the rule can be seen as a cluster in the feature
space, thus if the clusters can adapt accord-
ing to the information accounting for pattern
generation order, we will get more informa-
tive rules.

2. Uncertainty in the data should be considered.
That is, the clustering process shouldn’t be in-
fluenced too much by noisy data or outliers.

This motivates us to use the fuzzy min-max clus-
tering neural network (FMNN)12 with conceptually
simple but powerful on-line learning process13. The

network is order-dependent in the sense that the
clustering result may be different if the input pat-
terns are presented to the algorithm in a different
order. However, FMNN doesn’t consider the noise
contained in patterns and tries to include all patterns
in hyperboxes (clusters). This makes the network
very unstable and the clusters generated are very
close to each other.

In this paper, the contribution-factor based fuzzy
min-max neural network (CFMN) is developed
based on FMNN to explicitly exploit the order-
dependent information in the clustering process
and incorporates significant modifications that im-
prove the noise-resistant capability of FMNN. The
contribution-factor (CF) is also known as the typical
pattern, and the membership threshold above which
a pattern can be a CF of a cluster can be specified
by the user. CFMN also introduces a parameter that
specifies the minimum inter-cluster distance to en-
sure well-separated clusters. Furthermore, CFMN
can put most cluster centers in the high-density re-
gion of clusters without influence of low-density re-
gions. This feature is very important when clusters
are used as fuzzy rules because the high-density re-
gion of some cluster can be interpreted as the most
common part of that rule. Performance of the result-
ing fuzzy inference system (CFMN-FIS) is demon-
strated on two nonlinear benchmark processes and
three real-world data sets widely used in the fuzzy
modeling literature. The obtained results are com-
pared with results from the literature. It is shown
that the proposed algorithm is fast to learn and has
good prediction performance.

The main contributions are summarized as fol-
lows:

1. This study shows that the data-order informa-
tion can be exploited in the clustering process.
This information helps to discover the high-
density region of clusters.

2. We find that the learning process of FMNN
has some kind of periodicity, which signifi-
cantly impacts on the stability performance.

3. The proposed CFMN is intuitive in parame-
ter choosing. The user can easily specify the
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cluster size and inter-cluster distance accord-
ing to different situations.

4. CFMN has two advantages over existing clus-
tering algorithms. Firstly, the estimated clus-
ters are not affected by the clusters which
the algorithm fails to discover. Secondly, the
high-density region of a cluster is enclosed by
a hyperbox without influence of low-density
regions. These two features are essential to
generate more meaningful fuzzy rules for the
TSK-type CFMN-FIS.

The rest of this paper is organized as follows.
Section 2 analyses the stability issue of FMNN. In
Section 3, a detailed description of CFMN is given.
Section 4 describes the resulting fuzzy model. Sec-
tion 5 illustrates the feature of CFMN. The compar-
ison of CFMN-FIS with various algorithms are also
given. Finally, conclusions are given in Section 6.

2. Analysis of FMNN

This section will review the essential concepts of
FMNN, and discuss its stability issue. The proposed
CFMN will be introduced in Section 3.

The fuzzy min-max clustering neural network
(FMNN)12 is constructed by using hyperbox fuzzy
sets. A hyperbox is completely defined by its min
point and max point. The combination of the min-
max points and the hyperbox membership function
defines a fuzzy set (cluster). Once the FMNN is
trained, it is operated by presenting a pattern and
computing the membership value in each of the ex-
isting fuzzy sets. Although the learning portion of
the algorithm is not neural, the recall operation fits
immediately into a neural network framework.

2.1. Fuzzy Hyperbox Membership Function

Let the jth hyperbox fuzzy set B j, be defined by the
ordered set

B j = {Ah,Vj,Wj,b j(Ah)} (1)

for all h= 1,2, . . . ,m, where Ah =(ah1,ah2, · · · ,ahn)∈
In is the hth pattern in the data set, Vj =

(v j1,v j2, · · · ,v jn) is the min point for the jth hyper-
box, Wj = (w j1,w j2, · · · ,w jn) is the max point for
the jth hyperbox. An illustration of the hyperbox in
R3 is shown in Fig. 1.

 

Vj 

Wj 

Figure 1: The min-max hyperbox B j = {Vj,Wj} in
R3.

The membership function is defined as

b j(Ah) =
1
n

n

∑
i=1

[1− f (ahi−ω ji,γ)− f (v ji−ahi,γ)]

(2)
where ahi,ω ji,v ji are the ith element respectively of
the vectors Ah, Vj, Wj and f () is the two-parameter
ramp threshold function

f (x,γ) =


1, if xγ > 1
xγ, if 0 6 xγ 6 1
0, if xγ < 0

(3)

where γ is the sensitivity parameter that regulates
how fast the membership values decrease as the dis-
tance between Ah and B j increases. Fig. 2 shows the
change of b j(Ah) of one dimension when γ changes.

The membership function in FMNN measures
the degree to which the hth input pattern Ah falls
within the hyperbox B j formed by the min point Vj
and max point Wj. On a dimension-by-dimension
basis, this can be considered a measurement of how
far each component is greater than the max point
value or less than the min point value12. As Ah ap-
proaches the hyperbox, b j(Ah) approaches 1. When
the point is contained within the hyperbox, b j(Ah) is
equal to 1.
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Figure 2: Membership function b j(Ah) of FMNN.

2.2. Recasting FMNN in the Framework of ART

As a competitive learning based clustering method,
FMNN has much similarity with adaptive resonance
theory (ART)14. ART is a family of neural net-
works that develop stable recognition categories
(clusters) by self-organization in response to arbi-
trary sequences of input patterns15. At the training
stage, the stored prototype of a category (cluster) is
adapted when an input pattern is sufficiently similar
to the prototype. An input pattern is said to be novel
to the neural network if it deviates too much from
all existing prototypes, then the ART adaptively and
autonomously creates a new category with the input
pattern as the prototype16. An ART system relies
on novelty to distinguish between familiar and unfa-
miliar events (patterns), as well as between expected
and unexpected events17. FMNN follows the same
learning paradigm except that the prototypes are rep-
resented by min-max points.

In fact, FMNN grows out of the fuzzification of
the ART-1 neural network17. Here, for ease of un-
derstanding and analysis, we summarize FMNN as a
three-layer network in the framework of ART171815.

xh1 xh2 xhn

x1 x2 xn 

x1
′  x2

′  xn
′  

. . . 

. . . 

c1 c2 cn
. . . 

F0 

Input Layer 

F2 

Recognition Layer 

F1 

Comparison Layer 

Figure 3: Architecture of FMNN.

The architecture is shown in Fig. 3. The in-
put layer F0 receives and stores the input pat-
tern. The comparison layer F1 stores the normal-
ized input pattern also called the short-term mem-
ory. The recognition layer F2 stores the prototypes
(min points and max points) of recognition cate-
gories (clusters) as the long-term memory. Learn-
ing of the FMNN consists of creating and adjusting
hyperboxes in the F2 layer, trying to include all pat-
terns in hyperboxes, and is summarized as follows.

1. Parameters
The FMNN is determined by the hyperbox
size constraint parameter θ , and the parameter
γ controlling the fuzziness of the membership
function which is usually set to 4.

2. Network Initialization
The F2 layer is initialized as the null set.

3. Input Normalization
The input pattern in the F0 layer is normalized
from Rn to In, and is fed into the F1 layer.

4. Category Choice
Given a pattern Ah in the F1 layer, the hyper-
box B j in the F2 layer that provides the high-
est degree of membership and allows expan-
sion is identified. The expansion criterion of
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FMNN is

n

∑
i=1

(max(ω ji,ahi)−min(v ji,ahi))6 nθ . (4)

It defines the constraint regulating the aver-
age size of the hyperbox. The parameter θ

(0 < θ < 1) is a user-defined value directly
related to the number of hyperboxes generated
in the F2 layer and significantly affects the ef-
fectiveness of the training algorithm.

5. Resonance or Reset
Mismatch reset happens when one of the fol-
lowing cases is met:

• Case 1: the first pattern is presented.
• Case 2: all existing B j are exhausted with-

out any expansions.

Then a new category (cluster) B j is created by
copying Ah as its min point and max point,
i.e.,

Vj = Ah and Wj = Ah. (5)

Otherwise the network is said to reach reso-
nance at hyperbox (category) B j found in step
4), and the learning begins.

6. Learning
The hyperbox B j is updated according to

vnew
ji = min(vold

ji ,ahi), ∀i = 1,2, . . . ,n

wnew
ji = max(wold

ji ,ahi), ∀i = 1,2, · · · ,n.
(6)

7. Hyperbox Overlap Test
This procedure is performed immediately af-
ter the previous expansion step. Suppose that
B j is expanded, then each dimension of B j is
compared with the remaining Bk. The expan-
sion creates an overlap between B j and Bk if
there is some kind of overlap for each of the n
dimensions.

• Case 1: v ji < vki < ω ji < ωki.
• Case 2: vki < v ji < ωki < ω ji.
• Case 3: v ji < vki 6 ωki < ω ji.

• Case 4: vki < v ji 6 ω ji < ωki.

Note that the above four cases summarized in
Ref. 12 are not complete, and there are four
neglected boundary cases which may lead to
failure of overlap test, so we restate here with
corrections:

• Case 1: v ji < vki < ω ji < ωki.
• Case 2: vki < v ji < ωki < ω ji.
• Case 3: v ji 6 vki 6 ωki 6 ω ji.
• Case 4: vki 6 v ji 6 ω ji 6 ωki.

Each of these cases is illustrated in Fig. 4. The
added boundary cases are illustrated by the
bottom portions of Fig. 4c and Fig. 4d.

8. Hyperbox Contraction
The overlap between hyperbox B j and Bk is
eliminated on a dimension-by-dimension ba-
sis. Using the four cases described previously,
the overlapping hyperboxes are contracted as
follows to eliminate overlap in every dimen-
sion so that the resulting clusters are more
compact.

• Case 1: If v ji < vki < ω ji < ωki,

vnew
ki = ω

new
ji =

vold
ki +ωold

ji

2
. (7)

• Case 2: If vki < v ji < ωki < ω ji,

vnew
ji = ω

new
ki =

vold
ji +ωold

ki

2
. (8)

• Case 3: If v ji 6 vki 6 ωki 6 ω ji, then the
contraction is performed on the smaller of
the two overlaps. If ωki−v ji <ω ji−vki then
contract using the assignment

vnew
ji = ω

old
ki , (9)

otherwise use the assignment

ω
new
ji = vold

ki . (10)

• Case 4: If vki 6 v ji 6 ω ji 6 ωki, then, by
symmetry, the same assignments under the
same conditions in case 3 are applied here.
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(a) Case 1: Overlap = w ji− vki (b) Case 2: Overlap = wki− v ji

(c) Case 3: Overlap = min(w ji− vki,wki− v ji) (d) Case 4: Overlap = min(w ji− vki,wki− v ji)

Figure 4: The four cases that occur during overlap testing. Each graph shows the relative values of two hyper-
boxes along one dimension. Part of this figure is adapted from FMNN.

9. Cluster Stability Test
Steps 3)-8) are repeated for each pattern in
the data set until cluster stability is achieved.
Cluster stability is defined as all hyperbox min
and max points not changing during succes-
sive presentations of the dataset in the same
order.

Please note that steps 4)-6) together corresponds
to the hyperbox expansion procedure of the original
FMNN.

2.3. The Stability Issue of FMNN

In FMNN, the inappropriate setting of θ and the ran-
domness present in the dataset may slow down the
learning algorithm and even prevent it from conver-
gence. This is because that the expansion for pat-
terns with low membership degree makes the clus-
ters easy to grow up to full size, resulting in over-
laps between clusters. The situation would become
much more worse when many points are at the clus-
ter boundary.

After exploring the algorithm for different pa-
rameters and datasets, we find an interesting phe-

nomenon that the prototypes generated will reap-
pear after every p (p > 1) presentations of the data
set in step 9) of the training process, i.e., the over-
lap contraction process has some kind of periodic-
ity. At the beginning of the next presentation of the
dataset (represented by D), the cluster learning algo-
rithm is based on the result of the last presentation.
Hence the clusters eventually resulted are based on
the dataset [D,D, · · · ,D] of length p, not D if p > 1,
and thus the clusters are not well-defined.

The above stability issue can be explained by
the well-known stability-plasticity dilemma17 in the
ART literature. Simply speaking, a system must
have plasticity to learn about significant new events,
and it must also remain stable in response to irrele-
vant or often repeated events. In Ref. 19, two types
of stability condition named as stable1 and stable2
are defined for incremental clustering algorithms:

1. stable1: No prototype vector can ”cycle”, or
take on a value that it had at a previous time.

2. stable2: Only a finite number of clusters are
formed with infinite presentation of the data
set.
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FMNN fails to meet stable1 because FMNN tries to
include all patterns in hyperboxes which makes the
neural network too plastic.

Since we will employ the clustering neural net-
work to generate rules for fuzzy influence sys-
tem, the clustering algorithm should overcome the
stability-plasticity dilemma and converge quickly.
More importantly, noisy data from real world would
lead to serious stability issue.

Previous discussion suggests that FMNN should
be modified, so that the neural network can over-
come the stability-plasticity dilemma and still per-
forms well under noisy environment. Therefore, we
introduce a new FMNN named contribution-factor
based fuzzy min-max neural network (CFMN),
which achieves more stability by restricting the plas-
ticity and is more robust.

3. Proposed CFMN Clustering Algorithm

A common feature of incremental clustering algo-
rithms is that the resulting clusters would be differ-
ent if the presentation order of the data set changes.
This feature will be utilized in CFMN to capture
the high-density region of a cluster when the clus-
ter is corrupted by noise. Moreover, the algorithm’s
plasticity will be restricted to overcome the stability-
plasticity dilemma.

3.1. Overview of CFMN

The main characteristics of CFMN are summarized
as follows:

• The parameters are intuitive to choose.
• As clustering is exploratory in nature, it’s often

the case that the algorithm estimates the wrong
number of clusters. CFMN can ensure that the
estimated cluster centers are around the real ones
when the parameters are set over an appropriate
range, i.e., the estimated clusters are not affected
by the clusters which the algorithm fails to dis-
cover.

• CFMN exploits the order-dependent feature of in-
cremental clustering to make the algorithm order-
independent, i.e., the hyperboxes are designed to

enclose the high-density regions of clusters, and
this holds even when the data set is shuffled.

RESET 

xh1 xh2 xhn

x1 x2 xn 

x1
′  x2

′  xn
′  

. . .

. . .

c1 c2 cn
. . .

F2  Layer 

F1  Layer 

F0  Layer 

0.5 

(a)

Normal 

Mode 

Reorder 

Patterns 

Normal 

Mode 

(b)

Figure 5: Architecture of CFMN. (a) Normal mode.
(b) Relearning mode.

The architecture of CFMN is shown in Fig. 5.
Compared with FMNN, CFMN makes the mis-
match reset condition explicit and has two operation
modes, i.e., normal mode and relearning mode.

CFMN works in normal mode if data are gener-
ated and provided in sequence. This mode is based
on the observation that data sets generated in real
world represent some behavior of the underlying
system and, patterns are often not equally affected
by noise. Furthermore, normal (or typical) patterns
are more likely to be generated first and are also
more likely to form high-density regions. In con-
trast, patterns affected too much by noise (noisy pat-
terns) often form the low-density region of a clus-
ter. More specifically, each cluster is assumed to
consist of one high-density region and one or sev-
eral low-density regions, and CFMN aims to enclose
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typical patterns in hyperboxes without influence of
low-density regions.

The relearning mode is chosen if the data set
loses the order information. As the patterns pre-
sented first to the algorithm are closely connected to
the resulting clusters, CFMN introduces the relearn-
ing mechanism to eliminate the impact of presenta-
tion order.

Figure 6: Expansion of patterns. In CFMN, Ah is
neglected and only A′h can be expanded to B1.

The development of CFMN has considered the
following requirements.

1. The hyperbox should only expand typical pat-
terns.
Hyperbox expansion is an important step in
the learning algorithm and it is closely related
to coping with noisy patterns. Suppose that
the high-density region of a cluster is first pre-
sented to the algorithm so that a hyperbox has
been created for that region. Then it’s reason-
able to consider patterns with low member-
ship degree to existing clusters as noisy data.
An example is shown in Fig. 6. Pattern Ah
is presented to the network before A′h. We

can see that Ah is closer to the hyperbox B2
than B1. However, B2 can’t meet the expan-
sion criterion. Furthermore, Ah contains too
much noise to be expanded for B1. In con-
trast, A′h can be seen as a typical pattern for
B1 and can be expanded. Ah is neglected and
doesn’t contribute to the expansion of any hy-
perboxes in CFMN, whereas in FMNN, Ah
can be included into B1, which makes the hy-
perbox grow to full size quickly and the ex-
pansion sensitive to noisy patterns.

2. The membership function should reflect the
noise degree of a pattern.
The membership function of FMNN shown in
Fig. 2 is calculated based on the pattern’s dis-
tance to the cluster boundary, i.e., b j(Ah) is
close to 1 if Ah is close to the min point or max
point. Then a pattern far from the cluster cen-
ter can have high membership to the cluster.
The authors of DCFMNN20 pointed out that
the noisy data near the boundary should also
be taken care of. The boundary-based mem-
bership function is widely used in the fuzzy
min-max neural network literature. How-
ever, the membership degree changes dramat-
ically with the boundary as the cluster ex-
pands. This fact suggests that it’s difficult to
use the boundary-based membership function
as an indicator to detect noisy data. For ex-
ample, the noise level is first estimated from
data in DCFMNN20. Then, b j(Ah) of the pat-
tern Ah near the boundary is lower if the noise
level is high.

As stated previously in 1), the cluster center
has been supposed to lie in the high-density
region. The pattern far from the cluster center
often lie in the low-density region, so the data
near the cluster boundary should also have
low membership degree. This is achieved
by implementing an exponential membership
function, which makes it easier for CFMN to
copy with noisy data and the detection of out-
liers.

3. The resulting clusters should be well-
separated.
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(a) (b)

Figure 7: Comparison of FMNN and CFMN on a data set with 10 clusters provided in sequence. The center of
each cluster is presented first. (a) Result of FMNN. (b) Result of CFMN.

Choosing parameters in FMNN lacks intu-
ition and the generated hyperboxes are not
always well-separated. This can be seen in
Fig. 7a. CFMN introduces a parameter to con-
trol the inter-cluster distance. The clusters in
Fig. 7b is more well-separated than in Fig. 7a.
Fig. 7 also shows that the overlaps can be
avoided in CFMN.

3.2. Basic Definitions

In the following, we will describe the concepts of
novelty, virtual boundary, and typical pattern re-
spectively, which are essential in the development
of CFMN.

Let Ah1 and Ah2 denote the input patterns, ci and
c j denote the cluster centers of clusters Bi and B j,
and Vj and Wj denote the min-max points of clus-
ter B j. The center c j is defined as (Vj +Wj)/2. θ ,
d0, d1, and d2 are parameters controlling the behav-
ior of the network. θ specifies the maximum cluster
size for each dimension in an average sense (note

that parameter θ of FMNN specifies the maximum
hyperbox size).

The distance between Ah1 and Ah2 is defined as

d(Ah1,Ah2) = (||Ah1−Ah2||2)1/2. (11)

Pattern Ah is novel to the neural network if

min
j

d(Ah,c j)> d0. (12)

Then a new hyperbox (cluster) will be created for Ah,
and d0 can be interpreted as the minimum distance
between neighboring cluster centers, i.e.,

min
i, j

d(ci,c j)≈ d0. (13)

The cluster boundary in FMNN is formed by the
min-max points, whereas in CFMN, the hyperbox
formed by the min-max points are used to enclose
only a portion of the cluster. So the virtual bound-
ary of a cluster B j is defined as the points that satisfy

d(Ah,c j) = d1 (14)

where d1 is defined as 1
2 d0.
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Ah is a typical (normal) pattern to B j if

d(Ah,c j)6 d2 (15)

where d2 6 d1, i.e., a typical pattern should lie in the
virtual boundary of a cluster.

Before proceeding, we shall introduce a parame-
ter ∆ which satisfies

d0 = ∆ ·θ

d1 =
1
2

∆ ·θ . (16)

Next, parameters d0, d1, and d2 will be converted
so that they are related to the membership degree of
a pattern and more intuitive for the user to choose.

As stated previously, the membership function
should decrease with the distance between pattern
Ah and the centroid of hyperbox B j in order to make
it an indicator to tell good data from noisy data or
outliers. To meet the required criterion, a new mem-
bership function is defined as

b j(Ah) = exp{−
d2(Ah,c j)

γ2 }

= exp{−
||Ah− c j||2

γ2 } (17)

where γ is a value that satisfies

exp{−
d2

0
γ2 }= exp{−(∆ ·θ)2

γ2 }= 0.5. (18)

Note that θ and ∆ are user-specified parameters.
The membership threshold 0.5 has similar func-

tions as the vigilance value in ART below which a
new category (cluster) is created, i.e., Ah is novel
to the network if min j b j(Ah) 6 0.5. As we know,
the creation of new hyperboxes is closely related to
the detection of outliers, i.e., we shall create a new
hyperbox B j at the distance of ∆θ . B j is either a
cluster of true patterns or a cluster of outliers, and
the difference is that the density is lower in the lat-
ter case. Here we explicitly relate the membership
function and the creation of new hyperboxes to θ ,
which makes the selection of θ easier for the user.

For the pattern Ah at the virtual boundary of hy-
perbox B j, we can get its membership degree from

(14), (16), and (18)

b j(Ah) = exp{−d2
1

γ2 }

= exp{−(0.5∆ ·θ)2

γ2 }

≈ 0.84. (19)

From (15) and (19), a typical pattern Ah has
membership degree

b j(Ah)> φ = exp{−d2
2

γ2 }> 0.84. (20)

In CFMN, only patterns with high membership
degree (i.e., typical patterns) are allowed to con-
tribute to the adjustment of a hyperbox. To empha-
size this characteristic, a typical pattern of cluster
B j is also called a contribution-factor (CF) to B j.
In fact, CFMN introduces CF to limit the network’s
plasticity, i.e., only the CF (with strong influence to
some neuron) can be turned into long-term memory,
thus overcoming the stability-plasticity dilemma.

3.3. CFMN in Normal Mode

The two learning modes will be introduced sepa-
rately. The learning process of normal mode is sim-
ilar with that of FMNN. We will only describe its
main part.

1. Parameters
CFMN has three parameters. θ specifies the
maximum cluster size for each dimension in
an average sense, ∆ specifies the ratio of
the minimum inter-cluster distance relative to
θ , and φ specifies the membership threshold
above which a pattern can be a CF of a clus-
ter (φ ∈ (0.84,1) because a CF must lie in the
virtual boundary of a cluster).

2. Network Initialization
The F2 layer is initialized as the null set.

3. Input Normalization
The input pattern in the F0 layer is normalized
to In, then it is fed into the F1 layer. This step
is optional since the membership function is
of Gaussian type.
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4. Category Choice
Given a pattern Ah in the F1 layer, the hyper-
box B j in the F2 layer that provides the high-
est degree of membership and allows expan-
sion is identified. The expansion criterion is{

∑
n
i=1(max(ω ji,ahi)−min(v ji,ahi))6 nθ

b j(Ah)> φ .
(21)

It implies that the cluster B j shouldn’t expand
for Ah if B j becomes too full after expansion,
or if Ah is not a CF (typical pattern) of B j.

5. Resonance or Reset
Mismatch reset happens when one of the fol-
lowing cases is met:

• Case 1: the first pattern is presented.
• Case 2: max j b j(Ah) 6 0.5., i.e., novelty is

detected.

Then a new category (cluster) B j is created by
copying Ah as its min point and max point,
i.e.,

Vj = Al
h and Wj = Au

h. (22)

Otherwise the network is said to reach reso-
nance at hyperbox (category) B j found in step
4), and the learning begins.

6. Learning

7. Hyperbox Overlap Test

8. Hyperbox Contraction
Steps 6)-8) are same with that of FMNN.

9. Cluster Stability Test
Steps 3)-8) are repeated for each pattern of
the data set in the same order until cluster
stability is achieved. Note that the stability
issue encountered in FMNN may occur here
when the network has large plasticity, i.e., φ

is set around 0.84, which implies that patterns
along the virtual boundary are allowed to be
expanded. Increasing the value of φ can solve
this issue and can also significantly speed up
the learning process.

3.4. CFMN in Relearning Mode

Clustering algorithms such as the K-Means and Ex-
pectation Maximization, require to specify the num-
ber of clusters before the clustering process. In con-
tract, FMNN and CFMN require to specify the clus-
ter size of individual dimension. Just as K-Means
and Expectation Maximization that are sensitive to
the initialization of cluster centers, the order of in-
put patterns during training affects the nodes (clus-
ters) in the F2 layer of CFMN or FMNN, which
is a common feature for incremental learning algo-
rithms. The common method to solve this problem
is to present training patterns in random order, where
voting strategy is used to compute the final perfor-
mance. Genetic algorithm and Particle Swarm Opti-
mization have also been used to select the presenta-
tion order of training patterns2122.

As stated previously, the presentation order is
utilized in normal mode of CFMN to capture the
high-density region of a cluster when the cluster is
corrupted by noise and the data set is provided in se-
quence. However, the high-density region can’t be
captured perfectly when the data set loses the order
information, which is often the case.

The introduction of CF can limit the plasticity of
the network, i.e., a hyperbox can only expand near
patterns, and its center will not move dramatically
since it’s created if the user specifies a large φ . The
relearning mode relies on this fact to capture the
high-density region. The architecture of this mode
is shown in Fig. 5b. The patterns are first clustered
in CFMN normal mode, then patterns in each cluster
are sorted by density before applying CFMN normal
mode again. In the second applying of CFMN nor-
mal mode, the high-density region of each cluster is
presented first and enclosed by the hyperbox. Den-
sity estimation is performed using the kernel density
estimation (KDE)23

p(x) =
1
N

N

∑
n=1

1
(2πh2)1/2 exp{−||x− xn||2

2h2 }. (23)

where h denotes the bandwidth (h is set to θ/20 in
this study).

The relearning mechanism can ensure that the
resulting clusters are not affected too much by the
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noisy patterns. For illustration, this mode is run on
the popular ruspini24 data set. The data set is shuf-
fled before clustering. The result is shown in Fig. 8.
The high-density region of each cluster is perfectly
captured by the hyperbox and the cluster represented
by stars in the figure can be seen as an outlier cluster.

Figure 8: Result of CFMN on the ruspini data set.
The data set is shuffled before clustering.

4. CFMN Fuzzy Inference System

The clustering algorithm has been introduced in Sec-
tion 2 and Section 3. Now we will concentrate on the
construction of fuzzy models.

A fuzzy system consists of a bunch of fuzzy
if-then rules. Generally, fuzzy system identifica-
tion consists of structure identification and parame-
ter learning. Structure identification is used to deter-
mine the fuzzy membership functions and the appro-
priate number of rules. Parameter learning estimates
the coefficients of each rule.

In the proposed CFMN fuzzy inference system
(CFMN-FIS), the clusters generated by CFMN are
used as fuzzy rules. That is, the premise parame-
ters (membership functions of input variables) are

specified by the clusters and the input parameters
of CFMN. Note that CFMN works in normal mode
when the data set is provided in sequence. Other-
wise CFMN works in relearning mode. The result-
ing fuzzy system is of the following Takagi-Sugeno-
Kang (TSK) form:

Rule j : IF x1 is A j1 AND · · ·AND xn is A jn

THEN y j = b j
0 +b j

1x1 + · · ·+b j
nxn (1 6 j 6 c)

= (1,x) · (b j
0, · · · ,b

j
n)

T (24)

where x = (x1, · · · ,xn) is the input pattern, A j is the
jth hyperbox (cluster), and bj

i (0 6 i 6 n) are conse-
quent parameters.

For the jth Rule that is represented by cluster
center c j (middle point of the min and max points
Vj, Wj), fuzzy set A ji is given by

A ji(xi) = exp{−(
xi− (w ji + v ji)/2

γ
)2} (25)

where γ is defined in (18).
The fire strength µ j(x) of Rule j is calculated by

using multiplication as the AND operator

µ j(x) =
n

∏
i=1

A ji(xi) (26)

The inferred output of the model is calculated as

ŷ =
∑

c
j=1 µ j(x)y j

∑
c
j=1 µ j(x)

= (ρ1,ρ1x, · · · ,ρc,ρcx) · (b1
0, · · · ,b1

n, · · · ,bc
0, · · · ,bc

n)
T

(27)

where ρ j = µ j(x)/∑
c
j=1 µ j(x). The consequent pa-

rameters are then estimated by the recursive least
squares (RLS) algorithm.

5. Experimental Results

Demonstration of CFMN and CFMN-FIS will now
be given on a variety of data sets. The first
two examples relate to clustering characteristics of
CFMN and the remaining three relate to CFMN-FIS.
FMNN-FIS is also constructed in the same way as
CFMM-FIS for comparison.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 737–756
___________________________________________________________________________________________________________

748



(a) (b)

(c) (d)

Figure 9: Clustering result of Example 1. The centers estimated by CFMN are represented by big circles and
the hyperboxes are represented by rectangles.

5.1. Example 1—the Order-dependent Feature
of CFMN

The data used in this example is constructed in order
to illustrate the order-dependent feature of CFMN.
More specifically, the estimated cluster centers are
around the real ones when the parameters are set

over an appropriate range, i.e., the estimated clusters
are not affected by the clusters which the algorithm
fails to discover. We also show that the introduction
of ∆ offers the user more control over the cluster-
ing process. This data set consists of 100 input pat-
terns for each cluster. It’s generated by 3 Gaussian
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blobs which are denoted by Cluster A, B, C with
standard deviation 0.3 and with centers [(1, 1), (-1,
-1), (1, -1)] respectively. The true clusters are shown
in Fig. 9a. We can see that the hyperbox size is ap-
proximately 2 and the inter-cluster distance 2. So
the parameters of CFMN can be chosen as [θ = 2, ∆

= 1, φ = 0.93]. Please note that the setting of φ here
is arbitrary and the training will be fast if φ is large
because the number of CF will be very small.

To illustrate the benefit of ∆’s control over the
clustering process, the training of the network for
two different settings of θ has been carried out. The
clusters are presented to the algorithm in the gener-
ation order: [Cluster A, Cluster B, Cluster C]. The
parameters and clustering results including the es-
timated centers are shown in Fig. 9. Contour plots
of the membership function with three levels [0.5,
0.84, 0.93] are also shown, and for clarity, only two
clusters in each subfigure are plotted with contours.
Note that 0.5 is a threshold to determine if the pat-
tern is novel to the network and the virtual bound-
ary of each cluster is represented by the membership
value with level of 0.84

Fig. 9b shows the results of appropriate setting
of parameters. In Fig. 9c, θ is set to 3, which is ap-
parently too large and results in only two clusters,
but it’s interesting to observe that the two estimated
cluster centers are still very close to the real ones.
The reason why the estimated centers of Cluster A
and Cluster B are not affected by Cluster C is that
in CFMN clusters evolve by expansion of CFs. The
evolving stops because of the lack of CF caused by
gaps between pattern regions. In Fig. 9d, the unde-
sirable effects of large θ is fortunately avoided when
we adjust ∆ to 0.7. Although the clusters are almost
the same in Fig. 9b and Fig. 9d, the clusters are al-
lowed to grow a bit larger in the latter case because
of larger θ .

For comparison, the results of FMNN is shown
in Fig. 10. In Fig. 10a, points that belongs to Cluster
C are wrongly enclosed by Cluster B. In Fig. 10b,
FMNN also estimates 2 clusters when θ = 3, how-
ever, Cluster A and Cluster C are merged and the es-
timated cluster center is also affected by this merge.

This example shows that the utilization of order-
dependent information enables CFMN to discover

the high-density regions of clusters more robustly
than FMNN. This feature also allows CFMN to
generate fuzzy rules in a more reasonable way
for a wider range of parameters than FMNN. In
other words, the input space of the system can be
more easily covered. In order to exploit the order-
dependent information, CFMN also improves the
noise-resistant capability, as will be seen in the next
example.

5.2. Example 2—the Stability Feature and the
Enhanced Error-rejection Characteristic of
CFMN

This example is included to illustrate the stability
feature and the enhanced error-rejection character-
istic of CFMN. The stability issue of FMNN is ad-
dressed by CFMN via restricting the plasticity with
parameter φ . More specifically, CFMN introduces
the CF strategy to reduce the unnecessary overlaps
in FMNN, and also gains more stability over FMNN.
We reproduce the dataset of GFMM13. The original
data set consists of 41 patterns, 40 of which were
randomly generated around point (0.25, 0.25) within
0.05 range, and the remaining one represented an
outlier. We add a small cluster of 20 patterns on the
right in order to make sure that the when the algo-
rithm’s parameters are chosen to detect outliers, the
algorithm should still produce reasonable clusters.
Fig. 11 illustrates the advantage of CFMN. The out-
lier can be detected at very large θ whereas FMNN
suffers the problem at large θ . We can also see that
CFMN avoids the unnecessary overlaps in FMNN.
Please note that hyperbox overlaps directly reflect
the plasticity of the network, and thus can indicate
the stability.

5.3. Example 3—Identification of the Dynamic
System

In this example, CFMN-FIS is used to identify a dy-
namic system described by Juang and Lin25.

y(t +1) =
y(t)

1+ y2(t)
+u3(t). (28)

For the training of CFMN-FIS, the inputs are y(t)
and u(t), and the desired output is y(t+1). Train-
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(a) (b)

Figure 10: The clustering result of FMNN on dataset Fig. 9a.

ing patterns are generated with u(t) = sin(2πt/100)
and y(0) = 0. This system has been widely used in
the literature with different training size and same
testing size (200). The popular choice of training
size is 200 and 50000. For comparison, CFMN-
FIS is run in both cases. Fig. 12 shows distribu-
tions of the fuzzy sets in the input variables when
there are 11 clusters. To test the performance of
CFMN-FIS when the number of clusters vary, we
choose three sets of parameters, i.e., CFMN-FISa:
[θ = 0.25, φ = 0.93, ∆ = 1], CFMN-FISb: [θ = 0.15,
φ = 0.97, ∆ = 1], and CFMN-FISc: [θ = 0.05, φ

= 0.963, ∆ = 2]. FMNN-FIS is run with θ = 0.15.
Table 1 shows the performances of CFMN-FIS and
other algorithms. The results of RIT2NFS-WB and
SEIT2FNN are adapted from Ref. 26, the results of
McIT2FIS-US and eTS are adapted from Ref. 27,
the result of SAFIS is adapted from Ref. 28, the re-
sult of SONFIN is adapted from Ref. 25, the result
of McFIS is adapted from Ref. 29.

From Table 1 we can see that CFMN-FIS can
generalize well to a small K, and achieves state-of-
the-art results on this dataset. Note that, this dataset
is provided in sequence. FMNN-FIS also captures
the order-dependent information. However, the per-
formance of FMNN-FIS with training size 200 is not

good as RIT2NFS-WB and SEIT2FNN. In contrast,
the performance of CFMN-FIS is good in both train-
ing cases. This example shows that CFMN-FIS has
good performance on datasets provided in sequence
because of the utilization of order-dependent infor-
mation.

5.4. Example 4—Mackey-Glass Time-Series
Prediction

This example studies the prediction of the following
Mackey-Glass chaotic time series:

dx(t)
dt

=
0.2x(t− τ)

1+ x10(t− τ)
−0.1x(t). (29)

Parameter τ is set to 17, and x(0) = 1.2. We ex-
tract 1000 input-output pairs of the following format
[x(t−18),x(t−12),x(t−6),x(t);x(t+6)] where t =
118 to 1117. The first 500 samples are used for train-
ing and remaining 500 are used for testing. This is
the same experimental setting as Ref. 30. CFMN-
FIS is run for three sets of parameters, i.e., CFMN-
FISa: [θ = 0.18, φ = 0.93, ∆ = 1], CFMN-FISb: [θ =
0.14, φ = 0.96, ∆ = 1], and CFMN-FISc: [θ = 0.12, φ

= 0.87, ∆ = 1]. FMNN-FIS is run with θ = 0.14. The
results are shown in Table 2. The performance of
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(a) (b)

(c) (d)

Figure 11: Clustering in presence of outlier.

CFMN-FIS is benchmarked against the following al-
gorithms: ANFIS30, GEFREX31, RBF132, RBF233,
and RBF-AFS34. The result of CFMN-FIS is bet-
ter than FMNN-FIS and other algorithms. This ex-
ample again shows the advantage of capturing the
order-dependent information of data when the data
are provided in sequence.
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Figure 12: Input space and final assignment of rules
corresponding to CFMN-FISb of Example 3.

Table 1. Performances of various fuzzy models for the dynamic
system of Example 3. N represents the training size, K repre-
sents the number of rules.

Algorithm Type N K RMSEtrain RMSEtest

RIT2NFS-WB Type-2 200 7 0.0021 0.0021
SEIT2FNN Type-2 200 7 0.0022 0.0022
McIT2FIS-US Type-2 50000 5 0.0006 0.0006
McFIS Type-1 50000 20 0.0023 0.0023
eTS Type-1 50000 19 - 0.0080
SAFIS Type-1 50000 8 - 0.0112
SONFIN Type-1 50000 10 - 0.0130
FMNN-FIS Type-1 200 15 0.0024 0.0023
FMNN-FIS Type-1 50000 16 0.0013 0.0013

CFMN-FISa Type-1 200 6 0.0015 0.0015
CFMN-FISb 200 11 0.0007 0.0008
CFMN-FISc 200 25 0.0005 0.0005
CFMN-FISa 50000 6 0.0009 0.0009
CFMN-FISb 50000 11 0.0001 0.0001
CFMN-FISc 50000 25 0.00008 0.00008

Table 2. Performances of various fuzzy models for mackey-
glass of Example 4. K represents the number of rules. RBF1
and RBF2 are two RBF networks.

Algorithm K RMSEtrain RMSEtest

RBF1 - - 0.0013
RBF2 - 0.0012 0.0013
ANFIS 16 0.0016 0.0015
GEFREX 20 0.0054 0.0061
RBF-AFS 23 0.0096 0.0114
FMNN-FIS 47 0.0036 0.0037
CFMN-FISa 36 0.0016 0.0015
CFMN-FISb 52 0.0012 0.0011
CFMN-FISc 72 0.0010 0.0009

5.5. Example 5—Identification Performances on
Three Real-World Data Sets

In this example, the identification performance of
CFMN-FIS is tested on three real-world data sets
widely used in the fuzzy modeling literature. These
data sets are neither arranged in generating order,
nor in bunch of clusters. The purpose of this exam-
ple is to show that CFMN-FIS is still able to learn
the underlying system even when the input patterns
are shuffled.

The first is the Box-Jenkins furnace data set35. It
consists of 296 data points [u(t),y(t)], from t = 1 to
296, where u(t) is the input gas flow rate and y(t) is
the output CO2 concentration. The system is mod-
eled by ŷ(t) = f (u(t−4),y(t−1)) and all the sam-
ples are used for training as done in Ref. 27. The pa-
rameters of CFMN-FIS on this data set are [θ = 0.17,
φ = 0.96, ∆ = 1]. FMNN-FIS is run with θ = 0.2.

The second is the abalone data set collected from
the UCI machine learning repository. It consists of
4177 samples. The data are generated with ran-
dom sampling, with 3342 samples for training and
the remaining 835 samples for testing. The features
length, diameter, height, whole weight, shucked
weight, viscera weight, and shell weight are taken
as input, the number of rings is taken as output as
done in Ref. 26. The parameters of CFMN-FIS on
this data set are [θ = 0.6, φ = 0.97, ∆ = 1]. FMNN-
FIS is run with θ = 0.47.

The third is the auto MPG data set collected from
the UCI machine learning repository. It consists of
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392 samples, out of which 272 samples are ran-
domly chosen for training and the remaining 120
samples for testing. The three input features weight,
acceleration, and model year are used for estimating
the fuel consumption as done in Ref. 27. The param-
eters of CFMN-FIS on this data set are [θ = 0.5, φ =
0.92, ∆ = 1.5]. FMNN-FIS is tried with several θs,
but it’s difficult to get the cluster number that is less
than 10 on this dataset.

The results of CFMN-FIS and various algo-
rithms are shown in Table 3, Table 4, and Table
5. The results of SEIT2FNN36, McIT2FIS-US27,
and RIT2NFS-WB26 are adapted from27. The per-
formances of CFMN-FIS and FMNN-FIS on these
data sets are comparable to those three Type-2 fuzzy
systems. Note that both FMNN-FIS and CFMN-
FIS have the order-dependence feature, and Type-
2 fuzzy systems are generally considered to be
better than Type-1 fuzzy systems37. Compared
with FMNN, CFMN explicitly exploits the order-
dependent information of data to ensure that esti-
mated cluster centers are around the real ones even
if the algorithm fails to estimate the true number of
clusters. This order-dependence feature makes the
generated fuzzy rules easier to cover the input space
(see Fig. 12 for example), and also more meaning-
ful for the FIS. Please note that the cluster number
of CFMN in this example is also more controllable
than FMNN, and this is attributed to introduction of
the CF strategy which limits the algorithm’s plastic-
ity. More specifically, CFMN offers the user more
flexibility of choosing parameters than FMNN.

Table 3. Performances of various fuzzy models for the furnace
data set. K represents the number of rules.

Algorithm K RMSE
SEIT2FNN 19 0.2690
McIT2FIS-US 6 0.3181
RIT2NFS-WB 18 0.3527
FMNN-FIS 15 0.3472
CFMN-FIS 14 0.3385

Table 4. Performances of various fuzzy models for the abalone
data set. K represents the number of rules.

Algorithm K RMSEtrain RMSEtest

McIT2FIS-US 5 2.3357 1.8387
SEIT2FNN 5 2.3388 2.4330
RIT2NFS-WB 5 2.4047 2.1346
FMNN-FIS 4 2.0947 2.12299
CFMN-FIS 4 2.0989 2.1297

Table 5. Performances of various fuzzy models for the auto
MPG data set. K represents the number of rules.

Algorithm K RMSEtrain RMSEtest

McIT2FIS-US 3 - 2.6770
RIT2NFS-WB 4 - 2.7807
SEIT2FNN 4 - 2.7895
CFMN-FIS 3 2.7142 2.7402

6. Conclusions

This study addresses the construction of Takagi-
Sugeno-Kang (TSK) fuzzy models by means of
clustering. We recast FMNN in the framework
of ART and analyze the stability of FMNN. Then
CFMN is developed to exploit the order-dependent
information in the clustering process and to have
enhanced ability of noise reduction and outlier de-
tection. Owing to the introduction of contribution-
factor (CF) strategy and the parameter ∆, CFMN al-
lows the user to have more control over the clus-
tering process, so it is more intuitive in parame-
ter choosing. The CF is also known as the typical
pattern, and parameter φ specifies the membership
threshold above which a pattern can be a CF of a
cluster. CFMN is designed to have two operation
modes. The normal mode is used when the data set
is provided in sequence. Otherwise, the relearning
mode is used. The stability issue is addressed and
unnecessary overlaps in FMNN can be avoided in
CFMN. Furthermore, CFMN can put cluster centers
exactly in high-density regions without influence of
low-density regions. This order-dependent feature
ensures that estimated cluster centers are around the
real ones even if the algorithm fails to estimate the
true number of clusters and also allows CFMN to
generate more meaningful fuzzy rules for the TSK-
type CFMN-FIS. The effectiveness of CFMN and
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CFMN-FIS has been proven on the real-world and
simulation data sets.
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