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Abstract. To calibrate three-axis magnetic compass in complex conditions, an ellipsoid fitting 
algorithm is proposed in this paper, which is based on genetic algorithm searching for intersecting 
plane. First, by intersecting ellipsoid surface with a plane equation covering the whole space, the 
corresponding elliptic equation could be obtained. Then, using minimum sum of squares of the distance 
between data points and the fitting ellipsoid as the index, the three-dimensional magnetic compass data 
are fitted with the ellipse constraint. The adoption to the genetic algorithm is followed to search for the 
optimal intersecting plane equation, thus obtaining the optimal correction parameters of magnetic 
compass. Based on a series of tests, the static azimuth accuracy and dynamic azimuth accuracy can 
reach 0.46 degree and 0.68 degree respectively. This proposed method has high calibration accuracy 
and can meet the application requirements of magnetic compass. 

Introduction 
In recent years, the Unmanned Aerial Vehicle (UAV) has shown high potential in civil application, such 
as high voltage inspection, line inspection, etc. With the magnetic compass, the UAV can generate the 
corresponding azimuth information to finish task under GPS losing environment[1]. However, the 
magnetic compass has bias, scale factor error and non-orthogonal error[2]. In addition, magnetic 
compass is easily interfered by surrounding ferromagnetic materials, which is mainly divided into 
hard-iron interference and soft-iron interference[2]. Therefore, uncalibrated magnetic compass can not 
provide the corresponding azimuth information for the UAV. 

Based on external azimuth reference, Browditch proposed the compass compensation algorithm 
approximate the deviation to the low-order Fourier series of azimuth, and then compensate the 
magnetic azimuth[3][4]. But it requires accurate azimuth information, which is not applicable in many 
situations[5]. YUN JaeMu et al. adopted maximum-minimum method to calibrate the magnetic 
compass[6]. By rotating the magnetic compass at any two planes of the body coordinate, the maximum 
value and minimum value of the magnetic field in each axis can be acquired to get calibration 
parameters. In spite of the advantages of simplicity and easy operation, the calibration precision is 
limited because this method just considers the bias and scale factor error. In addition, the calibration 
parameters which are obtained by the maximum value and minimum value, are sensitive to the 
measurement noise. Dorveaux Eric et al. proposed a linear iterative calibration method based on 
constraints[7]. It assumes that the norm of three-axis magnetic field is 1, which is used as the constraint. 
Then with the index that the minimum sum of square difference between the norm of magnetic field and 
1, the calibration parameter is solved by the least square method. However, the accuracy of linear 
iterative method depends on the initial value and the calculation is very complex. 

Considering the influence of error and interference, the data of the triaxial magnetic compass are 
actually distributed on an ellipsoid. Therefore, the ellipsoid fitting is an effective magnetic compass 
calibration method for the magnetic compass measurement. In the literature [8], an ellipse fitting 
method with constraint is proposed. The minimum sum of squares of the distance between data points 
and the fitting elliptic curve is chosen as the index, and then the data of magnetic compass are fitted. 
But this ellipse fitting method is not available for the triaxial magnetic compass. In the literature [9], an 
ellipsoid fitting calibration method with a constraint is proposed. But the constraint is actually the 
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necessary and sufficient condition of ellipse fitting[10]. By intercepting elliptic surface with a plane 
equation, an elliptic curve is got and the parameters of elliptic equation can be calculated with the 
ellipse constraint. However, the plane is easily leads to the solution that is non-optimal[11]. 

To get optimal solution, a new magnetic compass calibration method which searches the optimal 
intersecting plane equation is proposed. Using the minimum sum of distance between the data and 
fitting ellipsoid as index, the optimal ellipsoid parameters can be calculated with the optimal 
intersecting plane equation searched by genetic algorithm. Finally the calibration parameter can be 
obtained from the ellipsoid parameters. 

The overall layout of this paper is defined as follows:  Section II gives the detailed descriptions of 
the error model and the ellipsoid equation of magnetic sensors. Section III proposes the calibration 
algorithm based on genetic algorithm searching for intersecting plane. Section IV verifies the 
effectiveness of the method by experiments, and the conclusion is given in Section V. 

Magnetic Compass Measurement Model  
The measurements of magnetic compass are the projections of magnetic field vector on the body axis 
and are denoted as a 3 1

b R ×∈m . Meanwhile, the measurements of the error-free magnetic compass 
under no interference are denoted as 3 1

n R ×∈m . To describe the relationship between bm  and nm  with 
measurement errors, the magnetic compass measurement model is shown as follows: 

S N 1b n= + +m K K m b w   (1) 

where SK  is a 3-D diagonal matrix that represents the influence of scale factor error. NK  is a 3-D 
matrix that indicates the non-orthogonal error result from the magnetic compass itself. 1b  and w  are 
both 3-D vectors, representing bias and white noise respectively. 

In practical applications, surrounding ferromagnetic materials can interfere with magnetic 
compasses, which mainly include hard magnetic interference and soft magnetic interference. The 
influence of hard-iron interference can be equivalent to the bias of the magnetic compass, and the 
influence of soft-iron disturbance can be equivalent to the scale factor error. Taking into account the 
influence of external interference, the measurement model of magnetic compass can be expressed as 
follows: 

S N sf m mb n n= + + = + +m K K K m b w Km b w   (2) 

Where sfK  is a 3-D diagonal matrix that represents the interference of soft-iron. mb  is a vector of 3-D 
which represents the equivalent bias of the integration of magnetic compass’s bias and hard-iron 
interference. The purpose of the calibration is to determine the matrix K  and the vector mb , and then 
to calculate the theoretical measurement value nm  by the measurement value bm . 

The theoretical measurements of magnetic compass nm  remain constant when the magnetic 
compass is only rotating at fixed points. This face can be expressed as follows: 

2 2 2
n nx ny nzm m m const= + + =m   (3) 

When rotating the magnetic compass in three dimensional space, the sampling points of the 
magnetic compass are distributed on the sphere of which the center is at the origin. Substituting Eq. (2) 
into to Eq. (3) can lead to  
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( )T T T
m m m2b b b W const− + + =m Hm b Hm b Hb  (4) 

where TH G G= ， 1 chol( )−= =G K H ， ( ) T T
m2 bW  = − + m b w G Gw . 

The ellipsoid fitting method can provide sufficient accurate parameters when w  tends to 0[12]. Eq. 
(4) is the quadratic form of the ellipsoid. It is obvious that the data points collected by the magnetic 
compass at the fixed point are distributed on the ellipsoid, whose center deviates from the origin due to 
its own error and the influence of external disturbances. 

The parameters of quadratic expressions are assumed as follows: 

2 2
2 2
2 2

a d f
d b e
f e c
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−
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Substituting Eq. (5) and Eq. (6) into Eq. (4) can lead to 

2 2 2 0bx by bz bx by by bz bx bz bx by bzam bm cm dm m em m fm m hm im jm l+ + + + + + + + + =  (7) 

Ellipsoid Fitting Calibration Method Based on Genetic Algorithm Searching for the Optimal 
Intersecting Plane Equation 

Ellipsoid Fitting Based on Plane Intersection. The ellipsoid fitting method of plane intersection is to 
intersect ellipsoid with a plane, and get the ellipse firstly. And then, the 3-D ellipsoid data are fitted by 
combining with the ellipse fitting constraint. Finally the parameters of ellipsoid can be obtained. 
Therefore, the constraint in the literature [11] can be applied to the ellipsoid fitting method by adopting 
the fitting method of plane intersection. 

The plane equation can be expressed as follows: 

bz bx bym m mα β γ= + +  (8) 

where α , β and γ  are all certain constant.  
Substituting Eq. (8) into the ellipsoid Eq. (7), the elliptic equation can be described as 

2 2 0bx by bx by bx byAm Bm Cm m Dm Em F+ + + + + =  (9) 

where  

2

2

2

A a c f

B b c e
C c d e f

α α

β β
αβ α β

= + +

= + +
= + + +

 (10) 

The ellipse fitting constraint 24 1AB C− =  can be written in matrix form 

T 1=k Mk  (11) 

where 
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[ ]Ta b c d e f h i j l=k  (12) 
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(14) 

Combined objective function and constraint Eq. (11), the Lagrangian multiplier method is used to 
calculate the ellipsoid fitting parameters. 

An Ellipsoid Fitting Equation Based on Constraint. It is necessary to determine the objective 
function before fitting the data of the triaxial magnetic compass. Due to the fact that the actual 
magnetic compass output data only approximately satisfy the Eq. (7), the function g  can be expressed 
as follows according to Eq. (7): 

( ) 2 2 2, =bx by bz bx by by bz bx bz bx by bzg am bm cm dm m em m fm m hm im jm l= + + + + + + + + + ⋅m k m k   (15) 

where 

2 2 2 T[ ,  ,  ,  ,  ,  ,  ,  ,  ,  1]bx by bz bx by by bz bx bz bx by bzm m m m m m m m m m m m=m   (16) 

Since ( , )ig m k  is the distance from the data point im  to the surface of the fitting ellipsoid, the 
objective function is constructed as 

2

=1
min ( , )

N

i
i

g =∑ m k Jk   (17) 

where 
1

2
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 
 
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 

m
m

J

m
M

. N represents the number of data points. 

If the plane of the ellipsoid is arbitrarily selected, the corresponding parameters of the ellipsoid are 
not optimal. Considering that the coefficient of bzm  is -1 in Eq. (8), if α  and β  are set range region in 
genetic algorithm, the ratio of α , β  and -1 is in a certain range. Therefore the plane range represented 
by the equation is limited.  To solve this problem, a new plane equation which makes the representation 
of the plane equation cover the whole space is proposed as follows: 

1bx by bzm m m zα β γ+ + + =   (18) 

And then, the plane Eq. (18) can be transformed into 

bz bx by
zm m mα β

γ γ γ
= − − −   (19) 
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It is clear that the Eq. (19) do not include the plane 0γ = . Thus, a way to process this problem is 
presented as follows: 

{ }m
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bx by bz

by bx bz

bz bx by
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zm m m L

zm m m L

zm m m L
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β γ
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α α α
α γ

β
β β β
α β
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γ γ γ

=


= − − − =




= − − − =



= − − − =


  (20) 

According to Eq. (20), the Eq. (18) can be processed and taken into Eq. (7), and then the different 
forms of elliptic equations will be obtained. The matrix M of Eq. (11) is also different, and is directly 
related to the plane parameter α , β  and γ . In this way, it can be guaranteed that the plane Eq. (20) 
that genetic algorithm searches for region covering all the planes of the 3-D space. 

Thus, combining Eq. (11), (17) and (20), the Lagrangian multiplier method is introduced to get a 
new equation shown as follows: 

T

T 1

λ=

=

J Jk Mk

k Mk
  (21) 

Moreover, since 2 T T Tλ λ= = =Jk k J Jk k Mk , the purpose of Eq. (21) is to obtain the minimum positive 
eigenvalue and its corresponding eigenvector. 

An Ellipsoid Fitting Calibration Algorithm Based on Genetic Algorithm. Since the genetic 
algorithm has shown high potential in searching an optimal solution in large space[13], an ellipsoid fitting 
method based on the genetic algorithm is proposed to solve the problem of the non-optimal plane 
equation. The genetic algorithm search the optimal intersecting plane equation, and then find the 
optimal positive eigenvalue and its corresponding eigenvector. The details of are shown in Fig. 1 and 
Table 1 respectively. 

The closer the individual approaches the optimal, the greater the fitness value is. In the case of 
ellipsoid fitting, the objective function is smaller when the ellipsoid parameters are better. In other word, 
when the corresponding minimum positive eigenvalue is smaller, the data pointers can be closer to the 
fitting ellipsoid surface. In addition, in order to avoid the plane parameters for which genetic algorithm 
searches can not meet the constraint Eq. (11), the penalty function is introduced into the fitness 
function. Accordingly, a new fitness function is proposed as follows: 

1S I
λ

= +   (22) 

where the penalty function is 

24 1

0 0
150 0 0.001
500 0.001

I r p
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r p
p

= ⋅

= − −

 =
= < <
 ≥

  (23) 
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Fig. 1  Flowchart of genetic algorithm 

Table 1  The parameters of genetic algorithm 
No. Parameter Value 
1 Maximum generation 400 
2 Population quantity 600 
3 Crossover probability 0.85 

4 Initial mutation 
probability 0.2 

5 Initial temperature T  50 
 

To avoid local minimal, simulated annealing algorithm is adopted in genetic algorithm, which can 
evolve to a better adaptation of the subgeneration[14][15], which improves directivity of genetic 
algorithm. In this paper, the simulated annealing algorithm is used to screen new individuals after 
crossover and mutation, so that the selected individuals can evolve to the optimal individual. 

Metropolis criterion is a significant part of the simulated annealing algorithm. It can be written as 

( )( )
1 ( ) ( )

exp ( ) ( ) /i
i

S y S x
P

S y S x T other
≥=  −

  (24) 

where [ ]1 1 1α β γ=x  represents the parent individual. [ ]2 2 2α β γ=y  is the child individual 
corresponding to x . The corresponding fitness of them are ( )S x  and ( )S y  respectively. If the random 
number rand(0,1)  is less than iP , then the child individual is chosen. Otherwise, the parent is retained. 

On one hand, the plane intersection method enables the constraint Eq. (11) to satisfy the condition 
of ellipsoid fitting. On the other hand, it makes the ellipsoid parameter only related to the plane 
equation. Compared with the direct search ellipsoid parameters, it can effectively reduce the search 
dimension, and make it easier for genetic algorithm to converge. 

Experiment  
In order to verify the performance of the proposed magnetic compass calibration method, the 
performance test of the self-developed navigation system (Fig. 2) is presented in this paper. The self- 
developed navigation system is based on stm32f407 chip, and is equipped with ADIS16488a and P307 
single-antenna GPS produced by UniStrong company. ADIS16488a is an inertial system produced by 
Analog devices and has a triaxial magnetic compass sensor inside. 
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Fig. 2  Navigation system equipped with ADIS16488a  

Fig. 3  Comparative experiment with dual antenna GPS 
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Fig. 4  Fitness function of genetic algorithm  

Fig. 5  Fitting ellipsoid of magnetic compass data 
 

Table 2  Plane parameters searched by genetic algorithm 
α  β  γ  

0.0048 -0.0016 -1.0 

Static Experiment Based on Dual-antenna GPS. This experiment is operated on a self-developed 
wooden platform (Fig. 3). A pair of GPS antennas is mounted at each end of the wooden platform’s 
long edge with a baseline of 1.6 meters. The dual-antenna GPS is UN237C, whose azimuth accuracy 
can reach 0.1 degree when the baseline reaches more than 1m.  In addition, a GPS antenna is installed 
in the short edge of the platform for navigation system. During the experiment, the platform is rotated 
approximately 30 degrees each time. The magnetic azimuth output by navigation system and the GPS 
azimuth are recorded simultaneously. 

m

0.7483 0.0048 0.0036
0 0.7506 0.0013
0 0 0.7571

0.1234
0.0305
0.0195

 
 = − 
  
 
 =  
  

G

b

 (25) 

Before the experiment, it is necessary to calibrate the magnetic compass inside the self-developed 
system. With the data output by the system rotated in the 3-D space, the genetic algorithm is used to 
search the optimal interception plane. Benefiting from the improvement of directivity, the fitness 
function can converge to the optimal value rapidly (Fig. 4). The plane parameters searched are fixed 
values with the same data (Table 2). Then the fitting ellipsoid (Fig. 5) and calibration parameters (Eq. 
25) are obtained. After the calibration parameters are introduced into the system, a comparative 
experiment of magnetic azimuth and dual-antenna GPS azimuth is carried out. The comparison results 
of the azimuth are shown in Fig. 6 and Fig. 7. From the results of Fig. 7, the maximum deviation is 0.9 
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degree, and the standard deviation is 0.46 degree. It is obvious that the magnetic azimuth of the 
magnetic compass can achieve high precision through calibration of this method. 
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Fig. 6  Comparative results of systematic magnetic azimuth and 

dual antenna GPS azimuth 
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Fig. 7  Magnetic azimuth error 

Dynamic Running Test. In order to further verify the system performance of the calibration, a 
Positioning and Orientation System (POS), whose azimuth nominal accuracy is 0.02 degree, is 
introduced into the dynamic running experiment as the standard azimuth reference. The self-developed 
navigation system and POS system are fixed in a car. The calibration parameter is written into the 
self-developed system and the running experiment is conducted to compare the magnetic azimuth 
between the self-developed system and the POS. The platform is shown in Fig. 8. 

 
Fig. 8  Platform of running test 

Through comparison of the POS system, the results of the azimuth comparison and the azimuth 
difference are shown Fig. 9 and Fig. 10 respectively. The azimuth difference is basically maintained 
within one degree, with the standard deviation of 0.68 degree. It can be concluded that the magnetic 
azimuth can achieve better precision in dynamic situation after calibration. 
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Fig. 9  Experimental data of running test 

0 500 1000 1500
-1.5

-1

-0.5

0

0.5

1

1.5

Time/s

A
zi

m
ut

h 
er

ro
r/d

eg
re

e

 
Fig. 10  The magnetic azimuth error of the running test 

 

522

Advances in Social Science, Education and Humanities Research (ASSEHR), volume 130



 

Conclusions 
1) This algorithm can achieve the calibration of the magnetic compass with high accuracy in both 

static and dynamic situations. 
2) The method, which uses a plane to intercept the ellipsoid, correlates the fitting parameters of an 

ellipsoid equation to the parameters of the plane equation. It enables the result of the calibration 
directly related to the search result of genetic algorithm. The searching dimension of this method is 
low and easy to be implemented. 

3) In the genetic algorithm, simulated annealing is introduced to deal with the problem of poor 
directivity. Due to the improvement of directivity, the genetic algorithm can search the optimal 
plane parameters, and then the optimal parameters of the ellipsoid equation are realized. 
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