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Abstract—In order to predict physics achievement in middle 
school, this paper proposed a new method based on big five 
model. First, we collected 300 samples, in which 150 passed and 
the other 150 failed the final physics examination. Then, we 
submitted the five demographic features and five big-five 
personality trait features to the artificial neural network (ANN). 
Third, we used back propagation algorithm to train the ANN. 
The cross validation results show that our method yielded a 
sensitivity of 83.00± 2.09%, a specificity of 82.73± 4.12%, and an 
accuracy of 82.87± 2.75%. 
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I.  INTRODUCTION 
The big five personality traits [1], containing openness, 

conscientiousness, extraversion, agreeableness, and 
neuroticism (abbreviated as OCEAN) as shown in Fig. 1, are 
an important psychological model to describe personality for 
non-only human but also animals like chimpanzees. 

Scholars have used the big five personality trait model to 
predict human behaviors. For example, Nagle [2] used big five 
to predict video game mechanics based on individual 
personality. Nishimura [3] studied the satisfaction and 
frustration in Japan. León [4] investigated the experiences in 
public sectors, and induced they were related to personality 
traits. 

In this study, we used a five-attribute basic demographic 
features and a five-attribute big five features, and stretch it out 
to a ten-entry vector. We then used a pass/fail as the output. 
We establish an artificial neural network (ANN) to establish 
mapping between the input and the output. 

The structure of this paper is as follows. Section II 
describes the collected materials. Section III describes the 
methodology used. Section IV contains the experiments and 
results. Section V offers the concluding remarks. 

 
Fig. 1. Big Five Personality Trait Model 

II. MATERIALS 

A. Subjects 
We enrolled in total 300 junior middle school students (100 

in Grade 7, 100 in Grade 8, and 100 in Grade 9). We also 
record their genders, ages, one-child attribute, and locations. 
The possible values of each attribute were listed in Table 1.  

TABLE I.  DEMOGRAPHICS OF 60 SUBJECTS FROM A JUNIOR MIDDLE 
SCHOOL 

Characteristics Value 
Gender Male, Female 

Age 11, 12, 13, 14, 15, 16 
One-Child No, Yes 
Location City, Suburb 

Grade Grade 7, Grade 8, Grade 9 

Openness

Neuroticism Conscientious-
ness

ExtraversionAgreeableness

Personality
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B. Big Five Test 
We used the shortened version, 60-item inventory, NEO-

Five Factor Inventory (NEO-FFI) to test the personal trait of 
each student. Table 2 shows the personality dimension plot of 
big five model. 

TABLE II.  PERSONALITY DIMENSION 

Personality dimension Facets 
Openness to experience Aesthetics, Fantasy, Feelings, Ideas, Values, 

Actions, 
Neuroticism Hostility, Anxiety, Depression, 

Impulsiveness, Self-Consciousness, 
Vulnerability to Stress 

Extraversion Activity, Warmth, Assertiveness, 
Excitement Seeking, Gregariousness, 
Positive Emotion 

Conscientiousness Order, Competence, Dutifulness, 
Achievement Striving, Deliberation, Self-
Discipline, 

Agreeableness Modesty, Trust, Altruism, Compliance, 
Tendermindedness, Straightforwardness, 

C. Physics Achievement 
In this study, we used the scores of final examination of 

corresponding grades. For simple, we set the scores over than 
60 as pass, and set scores less than 60 as fail. To balance the 
dataset, we chose 150 students who passed the final exam, and 
chose another 150 students who failed the final exam. 

TABLE III.  CATEGORY OF SCORES 

Scores Category 
>=60 Pass 
<60 Fail 

III. METHODOLOGY 
There are many methods used for classification. For 

example, the logistic regression [5] is an improved version of 
basic linear classifier. Decision tree [6-8] can be regarded as 
using rules on each attribute, the support vector machine (SVM) 
[9-17] is a linear classifier using samples lying in the 
hyperplanes, i.e., support vectors. Fuzzy SVM [18-21] 
integrated the fuzzy membership function into SVM. Artificial 
neural network (ANN) [22-26] is an extension of perceptron, 
and can be trained in back propagation style with descent 
gradient algorithm. Extreme learning machine [27-29] has a 
similar structure of ANN, but part of its weights are randomly 
generated and fixed.  

On the other hand, deep learning is the hottest field in 
classification of very large dataset. The convolutional neural 
network [30-32] and auto encoders [33-35] are two common 
models in deep learning. 

Nevertheless, our collected 300-sample dataset is too small 
to use deep learning. Hence, we turn to use traditional artificial 
neural network due to the universal approximation theory. 

A. Artificial Neural Network 

 
Fig. 2. Architecture of ANN 

The commonly used artificial neural network (ANN) 
contains three layers. The input layer receives the fed features 
extracted from each samples. The hidden layer contains several 
hidden neurons. The number is usually determined beforehand. 
The output layer usually contains the same number of classes, 
i.e., gives scores for each class [36, 37]. Finally, the class with 
the maximum score will be selected as the predicted class. The 
activations for both hidden layer and output layer are Sigmoid 
function defined as 

 
1( )

1 exp( )
S x

x
=

+ −
 (1) 

In this study, we chose the structure of ANN is 10-15-2. 
That means: we have 10 input neurons, 15 hidden neurons, and 
2 output neurons. 

B. Cross Validation 

 
Fig. 3. Diagram of 6-fold cross validation (E represents the error) 

6-fold cross validation was used to get the unbiased error. 
That means, we segment the dataset into six parts, each 
containing 50 samples. Then, in each trial, we used five folds 
as training, and the rest for test. We repeated above trial six 
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times, and each time a new fold is used as the test set. Fig. 3 
shows a diagram of 6-fold cross validation method. 

IV. EXPERIMENTS AND RESULTS 

A. Statistical Analysis of Proposed Method 
We used a 10x6-fold cross validation for checking the 

classification performance our method. Each fold contains 50 
samples. The sensitivity, specificity, and accuracy results are 
shown in Table 4, Table 5, and Table 6, respectively. Those 
tables show that our method yielded a sensitivity of 83.00± 
2.09%, a specificity of 82.73± 4.12%, and an accuracy of 
82.87± 2.75%. 

TABLE IV.  SENSITIVITY OF OUR METHOD 

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Total 
1 84 92 80 84 84 84 84.67 
2 88 88 88 84 84 84 86.00 
3 88 80 84 84 84 80 83.33 
4 72 84 72 88 84 80 80.00 
5 80 80 88 84 88 80 83.33 
6 80 88 76 88 84 80 82.67 
7 88 80 84 92 84 88 86.00 
8 84 80 76 80 76 96 82.00 
9 84 80 80 76 80 84 80.67 

10 84 76 84 84 84 76 81.33 
AVG 83.00± 2.09 

TABLE V.  SPECIFICITY OF OUR METHOD 

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Total 
1 76 84 88 80 84 92 84.00 
2 92 88 92 84 92 88 89.33 
3 76 80 80 88 84 88 82.67 
4 76 84 76 80 80 76 78.67 
5 84 84 84 76 76 84 81.33 
6 88 88 80 88 84 80 84.67 
7 84 80 92 88 80 76 83.33 
8 76 68 80 80 76 76 76.00 
9 88 80 80 72 76 80 79.33 

10 88 88 88 88 88 88 88.00 
AVG 82.73± 4.12 

TABLE VI.  ACCURACY OF OUR METHOD 

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Total 
1 80 88 84 82 84 88 84.33 
2 90 88 90 84 88 86 87.67 
3 82 80 82 86 84 84 83.00 
4 74 84 74 84 82 78 79.33 
5 82 82 86 80 82 82 82.33 
6 84 88 78 88 84 80 83.67 
7 86 80 88 90 82 82 84.67 
8 80 74 78 80 76 86 79.00 
9 86 80 80 74 78 82 80.00 

10 86 82 86 86 86 82 84.67 
AVG 82.87± 2.75 

B. Confusion Matrix 
The confusion matrixes of proposed method and ideal 

situation were plotted in Fig. 4. We can obverse that both 
confusion matrixes have a summation of 3,000, which is the 10 
times of the size of dataset. For the ideal confusion matrix, 0 
errors were made. By contrary, our proposed method 
misclassified 255 pass samples to fail, and misclassified 259 
fail samples to pass. 

  
(a) proposed method (b) ideal 

Fig. 4. Confusion Matrix 

C. Effect of Features 
In this experiment, we used only demographic features and 

only big five features. We measured the classifier by accuracy; 
the results are depicted in Table 7 and Table 8, respectively. 

TABLE VII.  ACCURACY USING ONLY DEMOGRAPHIC FEATURES 

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Total 
1 52 56 52 50 52 52 52.33 
2 52 58 56 56 58 52 55.33 
3 54 58 62 56 58 58 57.67 
4 58 56 66 52 58 54 57.33 
5 54 58 54 58 52 58 55.67 
6 58 60 60 64 60 58 60.00 
7 60 56 60 60 60 56 58.67 
8 58 62 62 58 60 60 60.00 
9 56 56 54 60 58 56 56.67 

10 60 58 58 56 58 58 58.00 
AVG 57.17± 2.32 

TABLE VIII.  ACCURACY USING ONLY BIG FIVE FEATURES 

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Total 
1 72 74 70 70 72 70 71.33 
2 78 74 76 78 82 78 77.67 
3 82 78 78 80 82 78 79.67 
4 80 74 78 78 80 74 77.33 
5 72 72 76 76 70 70 72.67 
6 72 72 76 76 72 76 74.00 
7 70 74 76 76 72 68 72.67 
8 70 78 76 82 80 78 77.33 
9 76 80 72 76 74 80 76.33 

10 78 82 86 84 84 82 82.67 
AVG 76.17± 3.53 

Here we observe that the accuracy significantly decreased 
to only 57.17± 2.32% if only using the five demographic 
features, and slightly decreased to 76.17± 3.53% if only using 
the five big five features. Hence, we can conclude that the big 
five is more efficient in predicting physics achievement than 
demographic features. 

V. CONCLUSIONS 
In this study, we proposed a new method to predict physics 

achievements in middle school by big five model and artificial 
neural network. The results showed the effectiveness of 
proposed method. 

In the future, we shall try to collect more data. In addition, 
we shall test other classifiers and try advanced optimization 
methods [38]. 
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