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Abstract. The purpose is to analyze the vibrational wave motion of finite coupled plates 
considering boundary conditions. Since reverberation ray matrix is a semi-analytical method, Local 
dual coordinate of each discrete plate was introduced to reverberation ray matrix method. The 
vibrational formulas of coupled plates were deduced by current reverberation ray matrix. The result 
of reverberation ray matrix was compared with the result of finite element method. The correctness 
of the derivation of wave solution was verified. In addition, the high precision of self-complied 
program of MATLAB based on reverberation ray matrix was verified. The calculation time of 
reverberation ray matrix and finite element method were compared and the high efficiency of 
solution was validated. The influence of loss factor on active power and reactive power flows was 
analyzed. It demonstrated that the loss factor has heavy influence on the active power flow and has 
little effect on the reactive power flow away from the resonance frequency. At the resonance 
frequency, the increase of the loss factor could effectively reduce the peak value of the reactive 
power flow. Loss factor have the opposite effect on power flow at resonance region and 
non-resonant region. 

Introduction 
During the operation of the ship, its power equipment will inevitably produce vibration and 

noise, which has become a significant topic and attracts many researchers’ attention. International 
Maritime Organization and the Equipment Committee have new demands on ship noise, higher 
requirements of the noise of ship cabin and the sound insulation index of bulkheads and decks are 
put forward. Most of the vibration produced by power equipment will be transferred from the 
pedestal to the hull directly and become structural-born sound. The wave transmission characteristic 
of vibrations from the source to adjacent plates should be analyzed.  

In 1998, PAO, et al. [1] proposed Reverberation Ray Matrix Method (MRRM), assuming that 
the elastic wave propagated in the structure and scattered at the node, the scattering matrix was 
obtained according to the equilibrium equation, and the return wave was obtained according to the 
scattering matrix and the phase matrix. At present, Reverberation Ray Matrix Method is mainly 
used to analyze the vibration response of beams and frames. Cuschieri J M, et al. [2] employed 
power flow to research the L-shaped plate, when the flexural wave number multiplied by the 
thickness was less than 0.1, the in-plane wave plate could be ignored. Wave power flow and flexural 
wave power flow of finite L-shaped plate were researched by Kessissoglou, et al. [3-4]. Wave 
method results show that in-plane wave of L-shaped plate can be converted into out-plane wave 
through the connected line. Miao F X, et al. [5-6] employed MRRM to analyze the modal of the 
plane frame and the dynamic response of the classical laminated composite beam, the first - order 
shear composite beam and the laminated composite frame. Jiang J Q, et al [7] used MRRM and 
transfer matrix method to study the Euler - Bernoulli characteristics of beams, the numerical 
stability was verified by the comparison of natural frequency. Liu C C, et al. [8-10] employed 
MRRM to analyze the short-term transient response of finite stiffened plates and cylindrical shells 
under impact loads. Comparing the analytical solutions with the results of the model tests, it was 
shown that the MRRM was an effective method for short transient response. 

In this paper, the local dual coordinates were introduced based on MRRM, the coupled plate 
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was discretized at the online connection, the local dual coordinate system of each discrete plate was 
established. The in-plane wave and the out-plane wave amplitude coefficient of each discrete plates 
are discretized. The force and displacement state vector response and vibration formula of each 
discrete plate were deduced when the coupled plate were under the point excitation. The vibration 
power flow of the structure was calculated by MATLAB program, and the efficiency and validity of 
MRRM were verified by comparison with the finite element numerical calculation. The influence of 
structural loss factor on active power flow and passive power flow was discussed. 

Theoretical formulations 
Fig.1 illustrated the coupled plate with the employed global coordinate. The plates are discrete 

at the place of the excitation force and the connection line. The connected angle is an arbitrary 
angle β . The connected lines of discrete plates are numbered by 0, 1, 2, 3. The discrete plates are 
numbered by plate 01, plate 12 and plate 23. Each discrete plate contained a local dual coordinate 
system, such as, the coordinate system of left edge of the plate 01 was x01y01z01, the right was 
x10y10z10. The origin of the right end coordinate of the plate 01 coincides with of the left end of the 
plate 12. The displacement vector of each discrete plate was u, v, w. The force vector was Nxx, Nxy, 
Vxy, respectively.  

β

 
Fig. 1 Diagram of coupled plate with connected angle 

Wave solutions of bending motion of coupled plate. Two parallel edges of coupled plates are 
simply supported along y direction. The length along x direction is L1, L2, L3, respectively. The drive 
force in local coordinate is ( )0 0,x y . Each rectangular plate is considered to have bending motion 
and in-plane motion. The plate is assumed to have small deformation, so the in-plane and out-plane 
motion are independent.  Based on vibration control theory of plate, bending differential equations 
are expressed as: 
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Two parallel edges of rectangular plate are simple supported, the displacement: 
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Whereu  is the longitudinal displacement, v  is the y-direction, w  is the lateral displacement, 
xϕ  is around the y-axis angle, yϕ  is around the x-axis angle. The E , h , µ , κ  indicates the 

Young’s modulus, plate thickness, Poisson ratio, shear factor, respectively. ( , , )f x y t  is the external 
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excitation. yk  is the wave number along y direction. m  is the modal number along y direction. 

1 2 3 4 5, , , ,n n n n na a a a a  is respectively the amplitude of the arrival wave. 1 2 3 4 5, , , ,n n n n nd d d d d  is 
respectively the amplitude of the wave. 1λ、 2λ 、 3λ  are the three-eigenvalues of the volatility of the 
out-of-plane bending motion, respectively. 2

1,2k  is the corresponding three elastic waves, 
respectively. The middle parameter is 1,2σ , respectively. The time item of i te ω  above equation was 
omitted. 
Wave solutions of in-plane motion of coupled plates. In-plane equation of vibration control can 
be rewritten as: 
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In-plane displacement can be expressed as: 
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Where Lk is the longitudinal wave number, Sk is expressed as the number of shear wave. The 
two eigenvalues of in-plane wave are 2 2

4 y Lk kλ = − 、 2 2
5 y sk kλ = − .  

The following relationship should be satisfied by force and displacement [4]. 

( )2 2

1, , ,
2

,
1 1 2 1

y yx x
xx xy x x

xx xy

wM D M D V Gh
x y y x x

Eh u Eh v Eh u vN N
x y x y

ϕ ϕϕ ϕµ
µ κ ϕ

µ
µ µ µ

∂ ∂   ∂ ∂− ∂ = + = + = +     ∂ ∂ ∂ ∂ ∂    
 ∂ ∂ ∂ ∂

= + = + − ∂ − ∂ + ∂ ∂ 

     (11)                                       

Where xxM , xV , xyM  indicates the bending moment, shear force, torque, respectively. xV , xxN , 

xyN  is the out-plane shear force, the in-plane axial force, the in-plane shear force, separately. 
Boundary condition of coupled plate. According to MRRM, the displacement vector and force 
vector of the discrete plate in modal n can be rewritten, so Eqs. (4)-(6) and Eqs. (9)-(10) can be in 
the form of matrix as follows: 

( ) ( ) , ( ) ( )n n n n n n n n n n n nf n n n nf n nx x x xδ δ= − + = − +W Y A P a Y D P d F Y A P a Y D P d           (12) 
Where the displacement state matrix of the nth mode at the section of x is 
{ }T

n xn yn n n nw u vϕ ϕ=W . { }T

n xxn xyn xn xn xynM M V N N=F is force state matrix. 
3 51 2 4( ) { }x xx x x

n x diag e e e e eλ λλ λ λ− −− − −=P  indicating the elastic wave. Phase diagonal matrix 
{sin cos sin sin cos }n y y y y ydiag k y k y k y k y k y=Y  is modal matrix along y direction. 

{ }1 2 3 4 5
T

n n n n n nd d d d d=d is the coefficient matrix of amplitude of departing wave. 

{ }1 2 3 4 5
T

n n n n n na a a a a=a is the coefficient matrix of amplitude of arriving wave. , , ,n nf n nfδ δA A D D  
can be derived from arriving wave and departing wave.  

The right edge parallel to the y direction of the plate 01 is connected to the left edge of the plate 
12 at line 1, which should meet continuity equations as follows: 
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The right edge parallel to the y direction of the plate 12 is connected to the left edge of the plate 
23 through the line 2, and the continuity conditions are defined as: 
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If the two edge parallel to the y direction of the plate 34 is simply supported, The boundary 

conditions are defined as: 
34 34 34 34

34 34 34 340, 0, 0, 0,xx xxx l x l x l x l
N v w M

= = = =
= = = =  (19) 

If the right edge parallel to the y direction of the plate 34 is free, similar to the boundary 
conditions, the corresponding balance equations had been omitted to avoid duplication. Each 
discrete plate has 10 unknown wave coefficients, there are three discrete plates, resulting in a total 
of 30 unknown amplitude coefficients. The connection line 0 and line 4 have five boundary 
conditions each, the connection line 1, 2, 3 has 10 balance equations, respectively. The coupled 
plate under point excitation has a total of 30 unknown wave amplitude coefficients. There 30 
balance equations, so the unknown coefficient could be solved. Then the displacement and internal 
force response were obtained. 

The balance equations can be assembled in the following form, when J is 0, 1, 2, 3, the 
amplitude of arriving wave of the plate is na . The amplitude coefficients of departing wave of the 
plate is nd . The scattering matrix is nS . Based on the discrete plate 01, the departing wave of the 
connection line 1 is 1 10 01[ ]T=d d d , the arriving wave and the arriving wave satisfied the following 
phase relationship: 
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Where [ ]1 1 1 1 1I = diag  represents the diagonal matrix, eleU  represents the cell unit of 
diagonal matrix. For any connection line J, the scattering matrix of the arriving and departing waves 
could be established.  

Verification and discussions 
（a）                                          （b） 
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Fig. 2 Comparisons of transverse displacement response (a) connected angle β=90 degree（b）L-shaped plate when connected 
angle β=90 degree. 

In order to verify the correctness of the formula of the coupled plate, MATLAB is used to 
calculate the dynamic response results of the MRRM and the finite element method are compared. 
For coupled plates, the properties of the plates are given as follows: length L1=L2=L3=0.4m, width 
Ly=0.6m, thickness h=10 mm, Young’s modulus of elasticity E=2.1×1011 Pa, Poisson’s ratio μ=0.3 
and density ρ=7800 kg/m3. The generalized inverse method of the MRRM and the frequency 
response of the finite element method at the excitation point is described Fig. 2(a). The excitation 
point is at middle of the line 1. The finite element size are 0.02 mÍ0.02 m and 0.05 mÍ0.05 m. 
Frequency range of measurement is selected as 0Hz ~800Hz and frequency step is selected as 2Hz. 
The frequency responses of the Finite Element Method are in good agreement with the present 
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MRRM. As the calculated frequency increases, the peak and phase of the curves are different, 
which are related to mesh density of Finite Element Method. Dynamic responses calculated by the 
present method are in good agreement with FEM, which proves that the derivation of wave solution 
of MRRM is correct.  

The properties of responding model of Fig. 2(b) is described as: the length L1=L2=L3=0.8m, 
width Ly=0.8m, thickness h=8mm. Steel properties are in consistent with the model of Fig.2. The 
two edges parallel to the x direction of each discrete plate are simply supported. The excitation 
force was located at the midpoint of the right end of plate 01, the transverse displacement was 
calculated at the excitation point of the L-shaped plate when connected angle was 90 degree. The 
Semi-analytical solution of MRRM was compared with the numerical results of finite element 
method. The model of finite element method of three kinds of mesh density is as follows: 0.02 
mÍ0.02 m, 0.03 mÍ0.03 m, 0.04 mÍ0.04 m. 

As shown in Fig. 2, with the increase of mesh density, the displacement response curve 
regarding frequency of the finite element method approached to the result of MRRM, showing that 
the result of the Reverberation Wave Method was in high accuracy. Results of finite element method 
are different when the model with different mesh density. To meet the calculation accuracy in 
structural dynamic analysis with finite element method, the element length should be less than 1/6 
of the minimum length of bending wave. For the coupled plate with connected angle β=90 degree, 
the corresponding minimum wavelength was 0.2m. When the upper limit of the calculated 
frequency was 800Hz, the element length should be less than 0.05m to fulfill the precision 
requirement. 

The calculation time of MRMM and finite element method with different mesh density were 
described in Tab. 2. The calculation results show that the calculation time increase obviously with 
the increase of mesh density of finite element method. The generalized inverse of the MRRM can 
reach the computational accuracy of the finite element method with high mesh density, and the 
solution time was shorter. MRRM is a semi-analytical method, according to the boundary condition 
and the vibration control equations, the unknown parameters can be directly calculated. For finite 
element method, a discrete element occupies a matrix storage space. It is not necessary to divide the 
coupled plates into smaller discrete plates for MRRM, which greatly improves the computational 
efficiency. At the same time, MRRM avoids modal instability when solving the dynamic response 
in high frequency range, and could effectively solve the problem in high frequency and could 
guarantee the accuracy of the calculation result. With three kinds of finite element mesh densities, 
the L-shaped plate had consumed 120s, 189s, 409s, respectively. With the number of discrete plates 
increase, the computation of finite element method takes time longer. For frequency response 
analysis, the current MRRM for coupled plates has the characteristics of high precision and high 
efficiency. 

Table 1 Calculation time for different methods 

Calculation Method Calculate time consuming (seconds) 
FEM-0.02Í0.02 120 
FEM-0.03Í0.03 189 
FEM-0.04Í0.04 409 

MRRM 5 

Power flow analysis 
To have a clear understanding of vibration power transmission at the connected lines, time 

averaged intensity of vibration at a specified x location are expressed, the real part of which is the 
active power flow [4].  

( ) ( ) ( ) ( ) ( )x x x xx y xy xx xyI w V M M u N v Nϕ ϕ∗ ∗ ∗ ∗ ∗= − + + + +& && & &                       (21) 
The power flow in the x direction of a finite plate can be expressed as an integral of the y 

direction intensity at the cross-section x. 
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Fig. 3 Active and reactive power flow with different loss factor: (a) Active power flow with loss factor η =0, 0.1, 0.001. (b) 

Reactive power flow with loss factor η =0, 0.1, 0.001.  
For coupled plates, the properties of the plates are given as follows: length L1=L2=L3=0.8m, 

width Ly=0.8m, thickness h=8mm, the connected angle β=1500. The properties of responding model 
are in consistent with the model of Fig. 2. The calculated frequency range is 200-800Hz and 
frequency step is 5Hz.The influence of loss factor on active power flow and reactive power flow 
was discussed. Fig. 4(a) presents the active power flow of coupled plate with the loss factor change. 
The comparison demonstrates that the loss factor is zero, the active power flow is much smaller 
than the active power flow is none-zero. The presence or absence of the loss factor has the 
significant impact on the active power flow. When the loss factor is zero, the active power flow is in 
the range of -50 dB in the calculated frequency range. 

As the loss factor increases, the active power flow is increased, and the loss factor does not 
have influence on active power flow at resonance frequency. It is demonstrated that active power 
flow is closely related to loss factor. When the loss factor is zero, the structural damping according 
to loss factor did not make the vibration energy less, the active power flow is small enough to be 
ignored. When the loss factor is non-zero, the vibration energy can be transmitted by vibration. Fig. 
4(b) describes that the change of the loss factor has little effect on the reactive power flow curve, 
and with the increase of the loss factor, the peak of the reactive power flow reduced near the 
resonant frequency, which has little effect on the reactive power flow in other frequency ranges. 
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Fig. 4 Power flow with loss factor η =0, 0.1, 0.001. 

The mechanical model of wave motion of Fig. 4 is consistent with the model of Fig. 4. The 
power flow curve is present in Fig. 4. With the increase of the loss factor, the peak of the power 
flow curve becomes narrow and steep, the corresponding frequency range is relatively narrow near 
the resonance peak. With the increase of loss factor, the vibration power flow decreases when the 
frequency away from the resonance range. The change of loss factor almost has no effect on the 
position of the resonance peak of power flow. When the loss factor is zero, the vibrational power 
flow is smaller than -50dB in frequency range, it is small enough to be ignored. The increase of loss 
factor could reduce the vibration energy only in resonance area, inversely, could increase the 
vibration energy away from resonance region. Also, loss factor couldn't change the resonance 
frequency. Vibration energy are almost from power flow peak at the resonance peak, so the increase 
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of loss factor can reduce the transmission of vibration energy. The change of the loss factor almost 
has no effect on position at resonance peak of power flow. 

Conclusions 
In this paper, the steady-state response formulas of coupled plates were deduced by current 

MRRM with local dual coordinates. The direct inverse of MRRM was used to compute the dynamic 
response by self-programmed MATLAB. The MRRM results were compared with finite element 
numerical solutions, the correctness of the derivation of the MRRM formula was verified. The 
results of analysis of coupled plates are summarized as follows: 

The local dual coordinate was introduced to MRRM, so the expression has a clear physical 
meaning, therefore the different boundary conditions of the elastic wave scattering and transmission 
of the physical relationship could be directly understood. After the local dual coordinates was 
introduced, the scattering matrix at the node is a constant matrix, which reduces the complexity of 
the formula derivation of coupled plates with much number of discrete plates. 

The MRRM is a semi-analytical method, which could be an effective method of active 
vibration control. Through power flow analysis, the loss factor is verified to have a significant 
effect on the active power flow, the active power flow with no loss factor is much smaller than the 
active power flow. The loss factor has little effect on the reactive power flow, which could 
effectively reduce the peak value of the reactive power flow at the resonance frequency, but has 
little effect on the peak value of the reactive power flow in other frequency range. The increase of 
loss factor could reduce the vibration power flow only in resonance area, loss factor have the 
opposite effect on active power flow at resonance region and non-resonant region, and almost has 
no effect on position of power flow at resonance frequency. 
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