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Abstract. In this paper, the R-function theory(RFT) is applied to solve the f bending problem of slip 
clamped shallow spherical shell. Firstly the fundamental solution of the biharmonic operator, the 
boundary equation and the R-function are used to construct the quasi-Green’s function. Then the 
model governing differential equation of the problem is reduced to the Fredholm integral equation of 
the second kind by Green’s formula. The singularity of the kernel of the integral equation is overcome 
by choosing a suitable form of the normalized boundary equation by the R-function. A numerical 
example shows that this method is an effective numerical method.  

Introduction 
As a kind of structural forms, a shell is widely used in various fields, such as, in the large-span roof, 
the underground foundation engineering, the hydraulic engineering, the large container 
manufacturing, the aviation, the shipbuilding, the missiles, the space technology, the chemical 
industry, and so on. 

In the analysis and calculation of various physical and mechanical problems in engineering, the 
governing differential equation describing their physical state and process needs firstly to be built. 
Only few problems with a regular geometric boundary and a simple differential equation can be 
solved with an analytical or a half analytical method. For most complex engineering problems, it is 
difficult to find an analytical solution so that an approximate method is used to analyze and calculate 
the problems. In many calculation problems of engineering, although geometry of arbitrary shapes, 
complex boundary conditions, various properties and inhomogeneous of materials, and so on, but a 
numerical solution can be obtained directly by using a numerical method from a mathematical model. 
The main numerical methods are the boundary element method, the finite element method, the finite 
difference method and the coupling method. 

In the paper, the R-function theory proposed by Rvachev[1] are utilized. The bending problem of 
slip clamped shallow spherical shell is studied. A quasi-Green function is established by using the 
fundamental solution and the boundary equation of the problem. This function satisfies the 
homogeneous boundary condition of the problem, but it does not satisfy the fundamental differential 
equation. The key point of establishing the quasi-Green function consists in describing the boundary 
of the problem by normalized equation 0=ω  and the domain of the problem by inequality 0>ω . 
There are multiple choices for the normalized boundary equation. Based on a suitably chosen form of 
the normalized boundary equation, a new normalized boundary equation can be established such that 
the singularity of the kernel of the integral equation is overcome. For any complicated area, a 
normalized boundary equation can always be found according to the R-function theory. Thus, the 
problem can always be reduced to the Fredholm integral equation of the second kind without 
singularity. Using the present method, Li and Yuan solved successfully the free vibration of clamped 
thin plates[2], the simply-supported thin plate[3,4] and shallow spherical shells[5,6]. For the first time, 
the proposed R-function theory method is applied to study the free vibration problem of slip clamped 
trapezoidal shallow spherical shell. The numerical example demonstrates the efficiency and the 
feasibility of the R-function theory method.  
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Fundamental equations 
The governing differential equations of the bending problem of slip clamped shallow spherical shell 
[7] can be expressed as follow 
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24 )( xx ∂∂+∂∂=∇  is the biharmonic operator, ϕ  is the stress function, w  is the radial 

deflection of the shell, R  is the radius of curvature of the shell, ),( 21 xx=x , Ω  is the domain of the 
trapezoid of shallow spherical shells in Cartesian coordinates; and ))1(12( 23 ν−= EhD  is the flexural 
rigidity of the shell, in which h  is the thickness of the shell, and E  and ν  are Young’s modulus and 
Poisson’s ratio, respectively. 

The slip clamped boundary conditions can be written as 
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22 xx ∂∂+∂∂=∇  is the Laplace operator, and Ω∂=Γ  is the boundary of the domain Ω . 
Making use of Eqs.(1) and (3), we can easily obtain 
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Substituting Eq.(4) into Eq.(2) yields  
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The model governing differential equation can be obtained as follow 
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where w  is the function of the radial deflection of the shell. 

Integral equations 
Let 0=ω  be the normalized boundary equation of the first-order on the boundary Γ , i.e.[1] 
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The quasi-Green function can be established as follows:  
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in which ),( 21 xx=x  and ),( 21 ξξ=ξ . Obviously, the quasi-Green function ),( ξxG  satisfies the 
following condition 
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In order to reduce the boundary value problems Eq.(5) and Eq.(6) into an integral equation, the 
following Green’s formula of sets of function )(4 ΩC , i.e., U , )(4 ΓΩ∈ ΥCV , is applied 
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Replacing U  and V  in Eq.(10) by w  and Green quasifunction G , noticing that rr ln)8/1( 2π  is 

the fundamental solution[5] of the biharmonic operator, and using Eqs. (6), (7) and (11), we can easily 
obtain 
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Substituting Eq.(10) into Eq.(14), we can obtain the expression of ),( ξxK  in detail. 

),( ξxK  in Eq.(14) appears discontinuous only if 01 =R , i.e., both ξx =  and 0=ω  come into 
existence. Actually, when ξx = , Eq.(15) can be reduced to 
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To make the kernel of the integral equation )(),( Ω∂Ω∈ ΥCK ξx , A normalized boundary equation 

will be constructed to ensure the continuity of ),( ξxK  in the following. It can be easily testified that 
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where 00 =ω  is the normalized equation of the boundary Γ , i.e., 0ω  satisfies Eq.(7). Obviously, 
equation ω  is also a normalized boundary equation of the first-order. 

Based on a suitably chosen normalized boundary equation 00 =ω , a new normalized boundary 
equation 0=ω  can be constructed by using Eq.(16), which ensure the continuity of the integral kernel 

),( ξxK  everywhere in the integral domain. 
In order to obtain numerical results of the boundary problem, the integral equation (13) can be 

discretized into the homogeneous linear algebraic equation. The radial deflection ( )iw x  and ( )iM x  
can be obtained by solving the algebraic equations. 

Numerical example 
A slip clamped shallow spherical shell is shown in Fig.1, and when we set ==== edba 0.75, c =2, 
it is a rectangular shallow spherical shell shown in Fig.1. The following reference parameters are used: 
the radius of curvature of the shell 2=R , 5.2=R , 3=R  respectively, the thickness of the shell 
h =0.1, Poisson’s ratio 3.0=ν , Young’s modulus E = 9103× , and the load Z =100. According to the 
theory of R-function[1], a normalized boundary equation of the first rank 00 =ω  can be constructed 
from the following equation:   
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01 =ω  and 02 =ω  denote various parts of the boundary of shallow spherical shell, respectively. 
Numerical results by the R-function theory(RFT) and ANSYS finite-element method (FEM) are 
shown in Fig.2 for comparison. Numerical results by 11 × 11 integral domain of the R-function 
theory(RFT) show fine agreement with the FEM solution by 200×200. It shows the advantages and 
efficiency of the present method. 

  

Fig.2 The deflection curve 

Conclusions 
In the present paper, the R-function theory is applied to study the bending problem of slip clamped 
shallow spherical shell. Compared with ANSYS finite element solution, it shows good agreement. 
R-function theory can also be used to effectively solve various boundary value problems in 
engineering by constructing a trial function that satisfies the boundary conditions and by combining 
with the method of weighted residuals such as the variational method and the spline-approximation 
[7-8]. 
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Fig.1 Slip clamped shallow spherical shell 
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