
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Analysis and Optimization of Parallel Features on Simulation of
Self-similar Network Traffic

Sai Sui1,a, Jing Du2,b, Yancang Chen3,c, Pei Wei4,d

1,2,3,4 Luoyang Electronic Equipment Test Center, Luoyang, 471000, China
aemail: suisai@foxmail.com, bemail:jdstarry@aliyun.com,

cemail: yancangchen@gmail.com, demail:weipei_uestc@163.com

Keywords: Self-Similar; Traffic Simulation; Parallel

Abstract. Cyberspace security is an important aspect of national security strategy, and cyberspace
experiment needs to construct a realistic test environment. In addition to hardware, software and
basic service, the network traffic simulation is also an important aspect of test environment
construction. This paper focuses on the requirements of constructing a large-scale network test
environment, studies the key elements of network traffic simulation, and the parallelism
characteristics are analyzed and optimized.

Introduction
In recent years, the development of Internet particular the mobile Internet has experienced an

explosive growth, the network size expands rapidly, while the network has generated a larger
amount of traffic. Cyberspace has almost surrounded everyone, which is very important for both
consumer and provider. The rapid innovation and growth of the network application put forward a
higher requirements of transmission and carrying capacity of network. To ensure the performance of
network, and make sure the processing capability of network equipment is in a balanced state, in
addition to increasing the carrying capacity of bandwidth, another important aspect is the
optimization of network management.

Optimization of network management, performance testing of network devices and analysis of
network load detecting are in line with the need to build a network test environment with real
network features. In addition to hardware, software, and basic services, building and operating of a
network test environment also require more of traffic simulation with the actual network
characteristics. This article focuses on the requirement of building a large-scale network testing
environment, and the key elements of network traffic simulation are researched, while the
parallelism characteristics are analyzed and optimized.

Network Traffic Model
With the increasing size of the network and network applications continue to expand, researchers

has got a lot of models by studying network traffic characteristics, which can describe features of
network traffic, such as renewal model, Markov model, fluid model, linear stochastic model and
self-similar traffic model. Paxson and his partner discover that network traffic exhibits self-similar
characteristics by observing WAN(wide area network) and applications. Traditional telephone
traffic and common packet traffic models contain Markov model and fluid model etc. In contrast,
the autocorrelation function of self-similar network traffic model has special damping
characteristics, that can describe a very wide burst nature within a large range of time. In such many
models, the self-similar traffic model is the main researched model due to that can truly reflect the
observed macroscopic properties of some modern network traffic, such as long-related and
self-similar properties.

A. Self-Similar Network Traffic Model
Self-similar refers to the consistency between local structure and the overall structure with both

1395

5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017)
Advances in Engineering Research (AER), volume 130

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

space and time. Its physical meaning specific to the computer network traffic, refers to the statistical
characteristics of similar nature in different time scales.

Self-similar process is divided into continuous-time and discrete-time self-similar process[1].
Continuous-time self-similar process is defined as follows:

When a> 0, the random process X(t) and a-HX(at) with the same distribution, can be expressed
as:{𝑋𝑋(𝑡𝑡1),𝑋𝑋(𝑡𝑡2), … ,𝑋𝑋(𝑡𝑡𝑛𝑛)}~{𝑎𝑎−𝐻𝐻𝑋𝑋(𝑎𝑎𝑡𝑡1),𝑎𝑎−𝐻𝐻𝑋𝑋(𝑎𝑎𝑡𝑡2), … ,𝑎𝑎−𝐻𝐻𝑋𝑋(𝑎𝑎𝑡𝑡𝑛𝑛)}

Among which, the statistical self-similarity should have the following features:
Mean: 𝜇𝜇 = 𝐸𝐸[𝑋𝑋(𝑡𝑡)] = 𝑎𝑎−𝐻𝐻𝐸𝐸[𝑋𝑋(𝑎𝑎𝑎𝑎)]
Variance: 𝜇𝜇 = 𝐸𝐸[𝑋𝑋(𝑡𝑡)] = 𝑎𝑎−𝐻𝐻𝐸𝐸[𝑋𝑋(𝑎𝑎𝑎𝑎)]
Autocorrelation function: 𝑅𝑅(𝑘𝑘,𝑇𝑇𝑖𝑖) = 𝑎𝑎−2𝐻𝐻𝑅𝑅(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎)
Discrete time self-similar process is defined as follows:
Suppose a time series 𝑋𝑋 = {𝑋𝑋𝑛𝑛,𝑛𝑛 ∈ 𝑍𝑍+}, represent a trace of traffic in fixed time granularity.

Define: 𝑋𝑋(𝑚𝑚) = {𝑋𝑋𝑛𝑛
(𝑚𝑚),𝑛𝑛 ∈ 𝑍𝑍+} is a m order process of polymerization,

There 𝑋𝑋𝑛𝑛
(𝑚𝑚) = 1

𝑚𝑚
∑ 𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖=𝑛𝑛𝑛𝑛−(𝑚𝑚−1)

There are two self-similar processes of discrete-time, certainty self-similar process, and gradual
self-similar process.

If the variance of process X: 𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋(𝑚𝑚)� = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]
𝑚𝑚𝛽𝛽 , 𝛽𝛽 = 2(1 − 𝐻𝐻), 0 < 𝛽𝛽 < 1,𝑚𝑚 ∈ 𝑍𝑍+

Autocorrelation function: 𝑅𝑅�𝑘𝑘,𝑋𝑋(𝑚𝑚)� = 𝑅𝑅(𝑘𝑘,𝑋𝑋),
Which called deterministic self-similar process.
If the variance of process X: 𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋(𝑚𝑚)� = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]

𝑚𝑚𝛽𝛽
Autocorrelation function: 𝑚𝑚 → ∞, 𝑅𝑅�𝑘𝑘,𝑋𝑋(𝑚𝑚)� → 𝑅𝑅(𝑘𝑘,𝑋𝑋) , this self-similar process called

progressive self-similar process.
Wherein, H represents self-similarity parameters, the value between (0.5, 1] represents a

self-similar characteristics.
Self-similar flow model has a variety of different forms, including fractional brown motion

model, fractional Gaussian noise model, wavelets model, ON/OFF processes model, Poisson-Zeta
processes models[2]. Wherein, ON/OFF process model is very popular, because it is simple and
practical, easy to control and can better reflect the characteristics of self-similarity.

B. ON/OFF Traffic Models
Consider N independent data sources Xi(t)，i ϵ [1,N], each data source is an renewal reward

process, and with an independently and identically distributed ON/OFF cycle. Xi(t) alternately
generate a value of 0 or 1, corresponding ON or OFF state, such non-overlapping time intervals are
called the ON period and the OFF period. Xi(t) = 1 means that send a packet at time t, therefore, an
ON period can be considered to form a packet column. And Xi(t) = 0 does not transmit any data, it
is idle. At time t, N such data packets overlap and can be expressed as: SN(t) = ∑ Xi(t)N

i=1 , the
synthesis flow shown in Figure 1.

ONON ON

ON

ON ON ON

ON

t

X1(t) OFF OFF OFF

OFF OFF OFF

OFF OFF OFF

X2(t)

X3(t)

S3(t)
Fig. 1. N = 3 ON/OFF data sources superimpose flow

Let T is renormalization time factor, and the process of packet overlapping in [0, Tt] is as
follows:
𝑌𝑌𝑁𝑁(𝑇𝑇𝑇𝑇) = ∫ [∑ 𝑋𝑋𝑖𝑖(𝑢𝑢)𝑁𝑁

𝑖𝑖=1]𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇
0

For sufficiently large N and T, the statistical properties of data packet overlap process

1396

Advances in Engineering Research (AER), volume 130

YN(Tt), t ≥ 0, which is depended on the distribution of ON/OFF cycles. Studies show that, N
independent and identically distributed ON/OFF source overlapped to form a self-similar traffic,
and the self-similarity index H is only determined by the shape of the data source parameters [3].

Parallel Programming Model
Parallel is a broad concept, depending on the implementation of different levels, that can be

divided into several levels. As shown in Figure 2, the most micro level is single-core instruction
level parallelism (ILP), in which a single processor execution unit can execute multiple instructions
at the same time. The next higher level is multi-core parallel, that in a chip integrated of multi-cores
to achieve thread-level parallelism (TLP). The next higher level is multi-processor parallel, that
multi-processors is installed on a circuit board to the thread-level and process-level parallelism.
Finally, networks can be used to achieve large-scale clusters or distributed parallel, each node is an
independent computer, by which can achieve a more massive parallel computing.

concurrent computation

cluster/distributed parallel

multi-processor parallel

multi-core parallel
single-core

instruction parallel

Fig. 2. parallel hierarchical graph

A. Analysis of Parallel Characteristics
The network traffic model based on the ON/OFF process can be more self-similar with more

nodes and longer simulation time. The main parameters of the ON/OFF model are packet size,
simulation time, and number of data sources. From the software implementation, the three main
parameters are defined as packet size (PS), inter departure time (IDT) and simulation node N. If the
simulation time is very long, the range of simulation time t is very large, which take up more
storage space, and the equivalent parameter IDT (ti-ti-1) can reduce the range of parameters, and
that is very effective to reduce the amount of storage space. Because the network traffic simulation
program has many simulation nodes and can run in the distributed environment, it can realize the
distributed parallel simulation. In addition, when the simulation time is relatively long, the
calculation of PS and IDT parameters is very large, the instruction level parallel optimization is
adopted to improve the program performance. The instruction-level parallel optimization design of
large-scale parameter calculation is carried out based on the GPU platform.

B. GPU Architecture and CUDA Programming Model
GPU uses large amount of cores with SIMD(single Instruction Multiple Data) parallel

processing[4], which is easy to implement parallel execution of multiple threads or tasks that can
fully exploit the parallelism of hardware resources for calculation program of large-scale networks
traffic models.

NIVIDIA launches the general parallel computing architecture CUDA that the CPU is master
controller, and GPU is data processor as well as co-processor, and CPU and GPU collaborative to
complete a task. CPU handles strong logic and serial computing-related work, and GPU mainly
handles work with highly parallel data processing among threads[5-8].

CUDA can run and manage multi-threads through the three level to manage these threads. A
certain number of threads constitute thread block, and a certain number of thread blocks organized
into one or two dimensional thread blocks Grid. The execute process of CUDA program is shown in
Figure 3.

1397

Advances in Engineering Research (AER), volume 130

CPU initialize，prepare initial data GPU allocate memory

copy initial data to memory

launch Kernel 1 execute
concurrent computation task

CPU execute part serial code

launch Kernel 2 execute
concurrent computation task

copy the result from GPU memory
to CPUCPU release resource

Fig. 3. Execute process of CUDA program

Program Design and Test
For large-scale network traffic simulation, we extract key parameters to IDT(inter departure time)

and PS(packet size) based on ON/OFF traffic model, and considering the actual effect of the
network users combining with group behavior modeling methods. We experiment and test the
acceleration performance of parallel computing program through the generation of normal
distributed random parameters.

Normal parameters can be generated by a variety of methods: generating by uniform distributed
random number, by Box-Muller method, by a sinusoidal graphics and so on. Here are analyzed and
tested for common Box-Muller method.

A. Parametric Analysis
Box-Muller method uses two groups of uniform distributed random numbers U1, U2 in (0,1], to

generate a standard normal random number, and then calculating to produce a normal distribution
with any mean and variance. The procedures are as follows:

(1) Generate uniform distributed random numbers in (0,1];
(2) Using the Box-Muller method to generate standard normal random numbers;
(3) Calculating to produce a normal distribution with any mean and variance.

B. Test Results
We have tested the performance of the simulation program on the NVIDIA NVS540 GPU

platform. The platform has two multiprocessors (MP), each multiprocessor has 48 CUDA cores and
1536 physical threads, and thus a single instruction can operate up to 3072 (1536 × 2) physical
threads, which can achieve instruction-level parallel optimization of single-instruction multiple
data(SIMD).

When the size of the normal parameters for the calculation is n, the consuming time of program
calculating is t, statistical data is shown in Figure 4, Figure 5, Figure 6 and Figure 7:

Fig. 4. Figure of t/n before acceleration Fig. 5. Figure of t/n after accelerating

As shown in Figure 4, with the increase of the calculation scale n, computation time t is
gradually increased. Overall, the computation time is linearly increasing with the expansion of
computing scale, and when the calculate size increased to a certain size (such as 104 or more), the

0

10

20

30

0 10 20 30CO
M

PU
TA

TI
O

N
 T

IM
E:

 T
/S

CACULATION SCALE: N X 10000

T / N B E F O R E A C C E L E R A T I O N

0

0.002

0.004

0.006

0 5 1 0 1 5 2 0 2 5 3 0 CO
M

PU
TA

TI
O

N
 T

IM
E:

 T
/S

CACULATION SCALE: N X 10000

T / N A F T E R A C C E L E R A T I O N

1398

Advances in Engineering Research (AER), volume 130

calculation time has reached the second level. As shown in Figure 5, with the increase of the
calculation scale n, computation time t is gradually increased. Overall, the computation time is
linearly increasing with the expansion of computing scale, but the increase trend is relatively more
slowly, and when the calculate size increased to a considerable size (such as 105 or more), the
calculation time is still the order of milliseconds.

Fig. 6. T/N diagram Fig. 7. M/N diagram

In comparison, the computation time of program after GPU accelerated increases relatively slow
and the consumed time of calculating is less of three orders of magnitude, and the acceleration
performance is very obvious, as shown in the figure 6, Figure 7. Therefore, when the computing
scale is large enough, the computing performance of program after parallel optimization with GPU
can be greatly improved.

Conclusion
As the network traffic in large-scale network environment shows the self-similar characteristics,

study of self-similar network traffic simulation technology is an important support of building
large-scale network test environment. Due to the many distributed simulation nodes and long
simulation time, the large-scale network traffic simulation shows strong parallel characteristics. At
present, more and more network terminals integrated GPU equipment, carrying out the parallel
optimization and design of network traffic simulation based on GPU architecture and CUDA
programming model is very practically significance and feasible. Experimental tests have shown
that the computing performance of network traffic simulation program is able to achieve a great
improvement.

Acknowledgement
In this paper, the research was sponsored by the National Nature Science Foundation of China.

(Grant No.61303061)

References

[1] Liu Yan. Several key technologies of network traffic control, Doctoral dissertation of Fudan
University, 2004.

[2] Chen Yufeng, Dong Yabo, Lu Dongming. Advances in network traffic simulation, Computer
Engineering and Design, 2009.

[3] Wu Zemin, Zheng Shaoren. One kind of empirical self-similar flow simulation algorithms,
System Simulation Academic Journal, 2002, 14(1):41-43.

[4] Ding Peng, Chen Lixue Gong Jie, Research of GPU general computing[J]. Computer and
Modernization, 2010 (1):12-10.

[5] G. Michael, L. G. Scott, N. John, et al. Parallel Computing Experience with CUDA[J]. IEEE
Computer Society, 2008 (1):0272-1732.

[6] Owens J D, Houston M, Luebke D, et al. GPU computing [J]. Proceedings of the IEEE,
2008,96(5):879-899.

[7] Blythe D. Rise of the Graphics Processor[J]. Proceedings of the IEEE, 2008,96(5):761-778

0

10

20

30

0 5 1 0 1 5 2 0 2 5 3 0 CO
M

PU
TA

TI
O

N
 T

IM
E:

 T
/S

CACULATION SCALE: N X 10000

T / N D I A G R A M

0

0.2

0.4

0.6

0 10 20 30

SP
EE

D-
U

P
RA

TI
O

: M

x
10

00
0

CACULATION SCALE: N x 10000

M / N D I A G R A M

1399

Advances in Engineering Research (AER), volume 130

[8] Ogawa S, Aoki T. GPU computing for 2-dimensional incompressible-flow simulation based on
multigrid method[C]. Transactions of the Japan Society for Computational Engineering and Science,
2009.

1400

Advances in Engineering Research (AER), volume 130

	Introduction
	Network Traffic Model
	A. Self-Similar Network Traffic Model
	B. ON/OFF Traffic Models

	Parallel Programming Model
	A. Analysis of Parallel Characteristics
	B. GPU Architecture and CUDA Programming Model

	Program Design and Test
	A. Parametric Analysis
	B. Test Results

	Conclusion
	Acknowledgement
	References

