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Abstract. In linear observations, i.e., a system of linear equations  ( ), the hard 
thresholding pursuit (HTP) is used to find a sparse signal. HTP is an iterative algorithm that has been 
found many applications in compressive sensing, due to its good recovery performance, which 
includes linear convergence speed, high recovery rate, and stability. In this paper, we further develop 
accelerated algorithms to deal with a inear least square (LLS) problem in each iteration. Theoretically, 
we prove that all these algorithms are convergent, provided that the sensing matrix has suitable 
restricted isometry property. Numerical experiments on sparse signal recovery demonstrate the 
efficiency of the proposed methods. 

Introduction 

The compressive sensing [1,2] aims to reconstruct a sparse signal  from a few linear 

measurements  ( ). Such problem frequently appeared in signal and image 
processing, face recognition, and more [3,4]. Many literatures have made great contributions to this 
research [1,2,3,4]. As is well known, the basis pursuit (BP) [1], which is one of the most famous 

reconstruction methods in , is to solve the following -minimization problem,  

                                                                                                               (1)  

where  is the sensing matrix and . Problem (1) is a convex problem, and then many 
convex methods are available. Although many methods are developed, solving BP still requires a lot 
of time. Besides the basic pursuit, paper [5] proposed an alternative strategy based on learning the 
sparsity of the signal, called hard thresholding pursuit (HTP), which is quite fast (converges linearly) 
and stable. The hard thresholding pursuit, which combines the hard thresholding strategy of iterative 
hard thresholding algorithm (IHT) [6] and the projection method of compressive sampling matching 
pursuit algorithm (CoSaMP) [7], can be described as follows:  

      

 
where  is the  iterate and  denotes the indices of  largest absolute entries of . 

Here, we introduce the definition of Restricted Isometry Property (RIP) which plays an important 

role in analyzing the convergence of HTP algorithm. The  order restricted isometry constant 

 of  has been defined in [8] as the smallest  such that  

,                                                                          (2) 

for any -sparse vector . The author in [5] has proved that the HTP algorithm has a linear 

convergent rate provided . 

In the second step of each iteration of HTP algorithm (HTP ), a linear least square (LLS) problem 
needs to be solved. However, as the scale of the problem increases, solving LLS directly will be very 
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expensive sometimes even intractable. Due to this, HTP algorithm will encounter challenge if the 
scale of the problem and the sparsity level are all very large. A scheme called fast hard thresholding 
pursuit (FHTP) proposed in [5] provides a method in large scale case. The main idea of FHTP is 

generating an approximate solution by applying the gradient method to the LLS problem in HTP  
rather than solving it exactly. Here, we present the detailed procedure of this scheme:   

 
where  is the step parameter. The FHTP also has a linear convergence rate if the iterative number 

 in the loop of Algorithm 1 is big enough and . Paper [5] proves that when  the 
following inequality holds,  

                                                                          (3) 

where  is any -sparse and obeys ,  are obtained by FHTP. 

Note that HTP  is actually a optimization problem, which can be solved by faster optimization 

method such as Nesterov method [9, 10], from the perspective of optimization. While, HTP  is also 
to solve a positive definition linear system, which can be solved by fast linear algebra method such as 
conjugate gradient method [11], from the perspective of linear algebra. In this paper, we show that if 

the gradient method applied in FHTP  is replaced by other methods, the scheme is also convergent. 
Therefore, we can employ some other fast methods to get faster HTP schemes. The rest of the paper is 
organized as follows. Section 2 introduces the preliminary knowledge. Section 3 presents the 
algorithms and their convergence. Section 4 contains numerical results. Finally, Section 5 concludes 
the paper. 

 
Notations 

In this paper, ,  and 

.  denotes as the set ,  denotes as 

, .  denotes as . 

Preliminaries 

In this part, we introduce two powerful algorithms which have been widely used in optimization and 
numerical linear algebra. These two algorithms will be employed in the proposed algorithm to 
accelerate the speed of HTP.  
2.1 The Nesterov method. The Nesterov method can be used to accelerate the speed of gradient 
method in minimizing the smooth convex function problem  

                                                                                                                                          (4) 

 where  has a Lipschitz continuous gradient with constant , i.e.,  

                                                       (5) 
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There are many variants of the Nesterov method [12, 13, 14]. Here, we present a simple one appeared 
in [14] as follows : 
 

 
Actually, this algorithm is equivalent to Constant Step Scheme II on Page 80 of [9] and FISTA on 

Page 193 of [12] without the nonsmooth regularization function. The  is the step parameter, a 

usually choice is . The author in [9] shows that  

                                                                                                                    (6) 

 where  is a solution to (4) and . When apply Algorithm 2 to , the objective 

function is , where . Because  has the restricted isometry 
property, it is easy to obtain that  

                                                                                  (7) 

 That means , which also means that  

                                                          (8) 

Then, we can set  in Algorithm 4 (see below).  

2.2  Conjugate Gradient Method. The HTP  is essentially solving following linear system  

                                                                                                                                  (9) 

where  and . Because  has the restricted isometry property, we can 

immediately get two conclusions: the first is that  is positive definition; the second is that 

. Based on these two points, we can apply conjugate gradient method (CG) 
whose convergence rate closely depends on the condition number of the coefficient matrix to (9).   

We emphasize that the matrix-matrix-vector multiplication  should be computed as following 

scheme: . A linear convergent rate about CG method has been proposed by [15] as  

                                                                                  (10) 

 

where  is the exact solution to (9),  and  is the condition number of . 

Considering  is a submatrix of  which is restricted isometry one, it’s easy to get that  

                                                          (11) 

 and . Substituting this into (10), we derive that  
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                                                                                   (12) 
Convergence analysis 
Assume that Algorithm  is a convergent iterative scheme which can be used to solve HTP . Just 

like the FHTP, we propose a class of schemes.  In Algorithm 4, Algorithm  can be Algorithms 2, 3 
or other algorithms.  

 
But no matter which one, Algorithm 4 is convergent provided Algorithm  is convergent. 

 Theorem 3.1 Suppose that the sequence  generated by Algorithm  satisfies 

. Then, for any -sparse  which obeys , the sequence  
generated by Algorithm 4 satisfies  

                                                                                                            (13) 

where .  

Because Algorithm  is convergent, . Let , 

. Note that , it’s easy to get 

. If , then . The numerical experiments 
demonstrate Algorithm 4 can work as well as FHTP in reconstruction ability. 
Numerical Results  
In this section, we report numerical results about Algorithm 4. In the experiments, ‘X’ will be 
substituted by the Nesterov method and CG method. All the experiments are run in MatLab 2010a on 
a server with 2.60GHz Intel processor and 3.90 GB RAM. 

Table  1: Time cost by different algorithms. The sensing matrix . 
 scenario   BP  CoSaMP   HTP   FHTP     X=Nesterov  X=CG  
Gaussian matrices and Gaussian vectors  
s=100  690.6s  0.7s  15.5s  15.3s  15.2s  15.3s 
s=200  937.2s  11.4s  15.4s  15.2s  15.1s   15.2s 
s=300  992.3s  51.8s  15.6s  15.5s   15.3s  15.5s 
s=400  1385.8s  136.8s  16.1s  15.8s   15.4s  15.7s 
Gaussian matrices and Bernoulli vectors  
s=100  409.6s  0.2s  13.2s  13.9s   11.8s  12.2s 
s=200  444.5s  3.2s  15.4s  15.2s   15.1s  14.7s 
s=300  447.2s  12.9s  13.7s  14.6s   12.8s  13.1s 
s=400  453.7s  32.2s  14.5s  16.9s   13.7s  13.9s 
Bernoulli matrices and Gaussian vectors  
s=100  645.5s  2.6s  14.9s  19.6s   16.5s  19.9s 
s=200  638.2s  52.7s  13.5  15.5   13.7s  15.2s 
s=300  784.8s  176.9s  13.6s  19.5s   14.5s  16.6s 
s=400  1314.1s  1507.5s  14.3s  24.3s   15.4s  19.3s 
Bernoulli matrices and Bernoulli vectors  
s=100  330.3s  0.6s  13.5s  15.2s   13.6s  13.8s 
s=200  351.1s  7.5s  12.9s  16.8s   14.0s  16.3s 
s=300  419.2s  665.2s  13.2s  19.1s   15.8s  18.4s 
s=400  406.1s  1531.9s  13.9s  21.1s   18.7s  19.8s 
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      Table  2: Time cost by different algorithms. The sensing matrix  
 scenario   BP  CoSaMP   HTP   FHTP    X=Nesterov  X=CG  
Gaussian matrices and Gaussian vectors  

s=100  992.9s  1.1s  21.6s  21.4s  20.9s  21.5s 
s=200  1117.2s  10.1s  22.0s  22.0s  21.8s   22.1s 
s=300  1174.7s  30.9s  22.4s  22.1s   22.0s  21.7s 
s=400  1226.3s  34.1s  22.9s  23.4s   22.1s  22.1s 
Gaussian matrices and Bernoulli vectors  
s=100  760.5s  0.2s  21.1s  21.5s   21.3s  21.5s 
s=200  766.9s  9.3s  21.2s  21.9s   21.4s  21.6s 
s=300  760.3.2s  30.6s  22.0s  22.8s   21.3s  21.4s 
s=400  765.5s  32.2s  14.5s  16.9s   13.7s  13.9s 
Bernoulli matrices and Gaussian vectors  
s=100  944.2s  2.1s  21.9s  25.1s   22.1s  25.2s 
s=200  1116.9s  21.2  22.5s  27.5s   23.0s  26.4s 
s=300  1175.7s  104.0s  22.7s  25.9s   23.7s  27.2s 
s=400  1220.1s  369.1s  27.3s  31.8s   24.2s  28.5s 
Bernoulli matrices and Bernoulli vectors  
s=100  643.4s  0.7s  21.9s  25.6s   22.7s  24.8s 
s=200  705.7s  8.3  22.6s  25.8s   22.3s  25.2s 
s=300  775.4s  21.3s  22.3s  24.5s   23.0s  27.7s 
s=400  856.1s  33.2s  25.2s  31.6s   24.0s  31.4s 

 

Table  3: Time cost by different algorithms. The sensing matrix . 
 scenario   BP  CoSaMP   HTP   FHTP    X=Nesterov  X=CG  
Gaussian matrices and Gaussian vectors  
s=100  897.4s  1.1s  18.4s  17.0s  16.4s  16.6s 
s=200  1099.7s  11.2s  17.1s  17.5s  16.8s   17.0s 
s=300  1302.8s  42.6s  17.9s  18.4s  17.6s  18.1s 
s=400  1506.2s  138.8s  18.1s  18.2s   17.7s  18.1s 
Gaussian matrices and Bernoulli vectors  
s=100  459.1s  0.2s  16.3s  16.8s   16.4s  16.6s 
s=200  520.4s  3.3s  16.1s  17.3s   16.4s  16.6s 
s=300  610.7s  13.0s  16.7s  23.8s   17.1s  17.8s 
s=400  680.0s  30.1s  16.9s  21.9s   18.3s  18.4s 
Bernoulli matrices and Gaussian vectors  
s=100  877.9s  5.1s  16.1s  20.2s   17.6s  20.2s 
s=200  1045.0s  254.3  17.8s  22.7s   19.0s  22.3s 
s=300  1414.1s  994.1s  18.2s  24.9s   22.3s  26.4s 
s=400  1773.9s  1722.8s  18.7s  28.7s   21.7s  25.3s 
Bernoulli matrices and Bernoulli vectors  
s=100  472.6s  0.7s  16.7s  21.7s   17.7s  19.9s 
s=200  468.7s  9.1  16.7s 23.6s   19.2s  22.1s 
s=300  656.8s  727.0s  17.6s  24.6s   22.2s  24.7s 
s=400  1500.0s  1363.0s  19.7s  32.3s   24.3s  31.2s 

 
1) The first experiment is about recovery ability of Algorithm 4. To show the results clearly, this 

experiment contains two parts: one focuses on comparing Algorithm 4 with FHTP and HTP; the other 
one focuses on comparing Algorithm 4 with other classical algorithms, namely the BP, CoSaMP 
algorithms (the matlab codes of these algorithms can be found in [18]). In this experiment, the sensing 

matrix  is a  Gaussian matrix or Bernoulli matrix and -sparse Gaussian or Bernoulli 

signals are employed. We run the algorithms with a stopping criterion  or 

 steps. And  means a successful reconstruction. For each , we 
use the 100 different matrices and sparse vectors. Figure 1 presents the numerical results. The results 
of experiment 1 show that the Algorithm 4 have proved capable of recovering the sparse signal from 
a small amount of linear observations. Just as what we declared before, the Algorithm 4 can work 
well in numerical tests. 

2) The second experiment is about the time cost by Algorithm 4. In this test, we use three sensing 

matrices: , , and . In this test, we concern on comparing 
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Algorithm 4 with the BP, CoSaMP, HTP and FHTP algorithm. The stopping criterion can be only set 

as  for that the reconstructions are all successful. Tables 1, 2 and 3 present 
the numerical results. Form the results of experiment 2, we can find that with almost the same 
accuracy Algorithm 4 with “X=Nesterov" and “X=CG" are faster than FHTP and BP. When the 
sparsity decreases, Algorithm 4 is also faster than CoSaMP. As the scale of the problem increases, 
more time can be saved. 
 

 
 
3) The third experiment is conducted on a real-world example. We employ the Lena picture 

( ) and the Haar wavelet frame matrix [17] for test. We concern on reconstructing  

from linear measurements , where  is a Gaussian matrix. As is well known,  

can be expressed as  where  and most entries of  are relative small. Therefore, 

 can be regarded as a sparse matrix. Then, the problem reduces to recovering sparse  from 

 
The BP, CoSaMP, HTP, FHTP and Algorithm 4 are used to reconstruct the picture. The parameter  

is set as . Figure 2 presents the reconstructed picture, the time cost, and the Signal-to-Noise 
Ratio(SNR). 
Conclusion 
In this paper, we propose a class of schemes for sparse recovery. The FHTP method can be regarded 
as a special one of this class. Theoretically, these proposed algorithms are proved to converge linearly. 
Finally, the numerical result validates the feasibility and efficiency of the proposed schemes. 
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