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Abstract.  This paper is to illustrate how Apple Pay works and what the protocol follows during the 
transaction. This process verified EMV Visa payWave protocol, and then, Apple Pay bounded with 
Visa card was lead to be discovered by NFC Reader and talk to Java Applet via NFC Reader. The 
results would be analyzed to see how Apple Pay protocol goes through and the difference between 
Apple Pay and EMV contactless cards. 

Introduction 

Apple Pay has been popular among the modern society as it is a convenient and fast payment 
method. However, customers are wondering about the safety of using these contactless payment 
methods in the shop without typing PIN number or Signature, we implemented the evaluation process 
of the both EMV and Apple Pay transaction protocols and analyzed the difference between those two 
contactless payment methods. To achieve this goal, an NFC Reader was first implemented on 
Android which was used to communicate to the Visa payWave card and Apple Pay, and show the 
response on the screen. The second step of the project was to implement a Java Applet tool on a 
laptop which can send messages to the NFC Reader and wait for the contactless devices response 
which will be parsed to Java Applet. Having done this, the application then decoded the response.  

Published Research 

EMV book 4.3-book 3 defined the application specification. It specified the transaction protocol of 
visa paywave. This section will illustrate how Visa's contactless protocol works. The protocol is as 
shown below [1]. 

 
Figure 1. Visa's payWave protocol 
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Design of the EMV-based software framework 
This section demonstrates the design of developing an EMV-based software framework which 
includes a simple functional mobile phone application and a dedicated PC applet. PC applet is 
designed to be a message sender and decoder, which can send random messages to the mobile phone, 
and show well-decoded receiving messages on the applet screen. The NFC-enabled mobile phone is 
designed to be a simple shop reader which could talk to EMV bank card or Apple Pay.                              

                            
Figure 2. Design of EMV-based software framework 

Implementation 
A new java applet is implemented for the user to select and set transaction data which are parsed to 

the bank card, then the user can get the response command which then is decoded on the screen. This 
applet includes the following functionalities: 

Selecting PSE: User can select PSE (Payment System environment) and choice will be uploaded 
by clicking the select button. 

Selecting AID: User can select AID (Application Identifier) and the choice will be uploaded by 
clicking the select button. 

Setting Transaction information: User set amount, currency, transaction data, country, and finally, 
choose one of the payment methods (Visa payWave or Apple Pay), then the whole information will 
be translated to a byte string and sent to the contactless payment system. 

Reading record: User can type the specific commands to read card records or send random 
messages, then the card response will be shown on the screen. 
Decoding byte string: The card response is plain byte string which can be decoded. The decoded 
message is shown as the raw string with the dedicated meaning on the screen. 

Algorithm of decoding. We received hex byte string from the card response. We proposed an 
algorithm to decode the APDU string. The algorithm is shown as below. 

First, we created a two-dimension tag dictionary array. Each entry has four elements: tag, tag 
description, tag type and tag attribute. Second, we wrote containTag function to check if we can find 
that response message contains the specific tag in the dictionary. The algorithm is shown as right. 
Then the function returns an array to record the results. Third, after calling the containTag function, 
which returned tagData. When we receive the card response, the string first is parsed to DecodeApdu 
function. Then the response is parsed to containTag to get a set of tagData values. 
 first, we check if the tag is found, if true, we then check tag type if it is constructed, if true, we 

get the tag length and the rest of string, which will be used for iteration as DecodeApdu(rest). 
 second, if tag is not constructed, then we go to check if it is primitive. If it is true, we get the tag 

length and tag data elements. Then the rest of string will be iterated to DecodeApdu function. 
 then, if tag type is not primitive, if it satisfies “DOL” type. If it does, we call getPdol(rest) 

function to handle decoding. 
 if it doesn't match “DOL” but matches “FORMAT”. If true, we call getFormat(rest) to handle. 
 finally, if the tag can't be found in dictionary, we output the unknown tag string and declare it 

is the unknown value. 
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Fourth, after card response string has been illustrated, we called function shownOnScreen to show 
the decoding of the response in a well-looking format. 

 
 

Figure 3. Algorithm of decoding 
Testing 

We tested Apple Pay bound with Lloyds Visa Debit card and HSBC Visa credit card. we selected 
PSE (1PAY.SYS.DDF01) or PPSE (2PAY.SYS.DDF01) to challenge Apple Pay AID. Then we 
challenged the card with GET LOG FORMAT command, GET PIN TRY COUNTER command and 
GET ATC command. We tried to read the record with SFI and record number. After that, we set the 
amount, transaction date, currency, location country, payment method and submitted to the 
background to process. These Get Processing Options information is sent to Apple Pay and will be 
immediately responded to. We want to test the card response in following situations: 1) set amount as 
50 pounds, 2) set invalid transaction date, 3) set expired transaction date, and 4) select pse1. 

Conclusion 
In “SELECT” part, after AID selected, Apple Pay needed Merchant Name and Location for 
transaction. Apple Pay also contains IPB which can filter the data in response to GPO. Apple Pay 
doesn't support 1PAY.SYS.DDF01. 2PAYP.SYS.DDF01 (PPSE) is only for contactless. Apple Pay 
has Log Entry but the number of the log record is 0, so we can't read transaction log by sending 
“READ RECORD” command. 

In “GPO” part, if we set amount equals 50 pounds, the transaction goes and we can get a response 
from Apple Pay. Then, Apple Pay disconnects with the terminal immediately. 

From the message in response to “GPO”, AIP of Apple Pay is 20 40. This means Apple Pay 
supports DDA but no AFL value, so we can't read SSDA (Signed Static Data Authentication) from 
the response. The most important thing is “Track 2 Equivalent Data”, this value shows a “PAN and 
Expired Date”-like string but not the real card number and expired date. This means Apple Pay takes 
a tokenization technology which can replace the real card number and expired date. This technology 
can provide security for card information. That can be alternative to “encryption” technology which 
provides data authentication to the card. Therefore, we can see Apple Pay doesn't contain SSDA data. 
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According to the response, we can see Apple Pay doesn't return CID value which means the card 
can't take action to generate cryptogram for the transaction. This means Apple Pay doesn't support the 
offline transaction and terminates the transaction immediately. Another difference between Apple 
Pay and EMV contactless bank card is Apple Pay's tag is dynamic. The tag is different for each time 
it is discovered. When tag discovered, the connection between the Apple Pay and terminal is kept less 
than one minute. This means the if the transaction is exceeded the card timeout, Apple Pay will 
terminate the transaction. According to the analysis of Apple Pay above, we can draw the protocol 
how Apple Pay work. 

                               
Figure 4. Apple Pay's Protocol 

Appendices 

Response APDU Format. The response is a byte hex-string which is encoding as the following 
format. It can be divided into two parts, one is the body part, the other is the trailer. The data in body 
field are objects structured as the BER-TLV format. As defined in ISO/IEC 8825. A BER-TLV data 
object consists of 2-3 consecutive fields [2]. 

 
Figure 5. BER-TLV structure 

If the tag is constructed, the value field consists of consecutive tag-length-value objects. As the 
figure shown above, the first and second tags are constructive. If the tag is primitive, the value field of 
the tag contains the data elements. For example, the third tag is primitive. 

Acknowledgements 
    The author would thank to Tom Chothia and Ye Du to help and support author with this project. 

Author also would like to thank Kenny Cao who provided cards for author on testing purpose. 

References 

[1]   Tom Chothia et al. Relay Cost Bounding for Contactless EMV Payments, 2015, p. 5. 

[2]   EMVCo. EMV Integrated Circuit Card Specifications for Payment Systems Book 3: Application 
Specification, 2011, p. 155. 

Advances in Engineering Research, volume 118

314




