
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

A UVM-based AES IP Verification Platform with Automatic Testcases
Generation

Lin Zhu1, Ligang Hou1, Qiuyun Xu1, Jingsong Zhi1, Jinhui Wang2

1VLSI & System Lab, Beijing University of Technology, Beijing 100124, China
2Department of Electrical and Computer Engineering, North Dakota State University, ND 58102 USA.

Keywords: UVM,Verification,AES,Automatic,Coverage

ABSTRACT:This paper applied UVM (Universal Verification Methodology), an advanced verification
methodology which was based on SystemVerilog language to build AES (Advanced Encryption Standard)
IP verification platform and environment. Functional verification of the AES module, through a large
number of testcases and constrained random test could achieve 100% functional coverage. In addition, the
testcases will be run by the verification platform with automatic generation. It both can run the specified
testcases in the terminal, which can customize the testcases variables through the orientation test method,
and can automatically run all the testcases of the verification platform. This method could improve the
efficiency and reusability of the verification, and the simulation results show that the AES IP design is
successful.

 INTRODUCTION

With the integration circuit design to VLSI (Very Large Scale Integration Circuit) development, the
chip verification is becoming more and more difficult. The workload of verification has accounted for
about 70% of the whole SoC development. Therefore, it is essential for us to improve the chip verification
of efficiency[1]. The Universal Verification Methodology (UVM) is a powerful verification methodology,
which can verify all types of digital logic designs, large or small, FPGA or ASIC, and so on. Furthermore,
UVM[2] is derived from OVM (Open Verification Methodology), VMM (Verification Methodology
Manual) and AVM (Advanced Verification Methodology). This means that UVM testbench architecture
and classes are inherited from other methodologies that have proven effective for verification of digital
designs.

AES (Advanced Encryption Standard) also called Rijndael algorithm. It is a symmetric encryption
algorithm, which can encrypt and decrypt with the same key. As the DES[3] (Date Encryption Standard) is
short, and it is easy to crack. AES has replaced the DES and became the new generation of encryption
standard. AES can use cipher keys with lengths of 128, 192 and 256 bits. This paper mainly uses the UVM
methodology and the typical UVM platform to verify 128 bits of the AES module, which can verify
process of encryption and decryption.

AES ALGORITHM

AES[4] is a kind of high efficient and secure symmetric advanced encryption standard. According to
the different ways of encrypting the message, the symmetric cipher algorithm can be different. This
standard specifies the Rijndael algorithm, which is a symmetric block cipher. This algorithm can process
data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits. AES-128 algorithm runs

442

2016 International Conference on Engineering and Advanced Technology (ICEAT-16)
Advances in Engineering Research (AER), volume 82

throughout the process of HDCP, including HDCP authentication stage and HDCP encryption stage. AES
algorithm is the core of HDCP.

Due to the limited length of key, it is used to extend key into a longer key with KeyExpansion, as a
key encrypted with the all rounds. A 128 bits plaintext block is entered through Nr round of transformation,
which is encrypted into a 128 bits block cipher. Other each round of encryption process is the same
besides the final round of the encryption process.

When it comes to AES algorithm process, plaintext with expanded key uses an XOR operation, then
following these transformations SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey()
transformation– are described in Figure 1. These processes should repeat nine times, and then the last time
algorithm does not need MixColumns(). Finally, the Key Expansion uses an XOR operation and outputs
ciphertext.

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Input Plaintext

Output Ciphertext

Figure 1. Aes cipher.

UVM VERIFICATION PLATFORM

The UVM verification platform is composed of a series of reusable components, which can be used as
a Universal Verification Component. These components have many advantages, such as configuration,
encapsulation, easy-to-use and high reusability. A Universal Verification Component has a fixed structure,
including a series of components to complete for a particular protocol standard simula tion, inspection and
collection coverage. These components play an important role in UVM verification platform.

AES IP VERIFICATION ENVIRONMENT

A AES IP verification platform based on UVM is designed as shown in Figure 2. The design of

platform can be partitioned into three primary parts: the test section, the environment section, and the
sequence (stimuli) section. The base_test module contains aes_env module that consists of aes_agent_i,
aes_agent_o, aes_model, aes_scoreboard. It is called an environment because it can contain the components,
which are necessary to create an effective verification environment.

443

Advances in Engineering Research (AER), volume 82

aes_sqr aes_drv

aes_mon_i

aes_agent_i

aes_mon_o

aes_agent_o

mdl

aes_scb

aes_more_seq
seq1
seq2

...

seq3

aes_env
aes_case_more

base_test

Vif AES
IP

Figure 2. Aes IP verification platform.

As shown in Figure 2 we can see that the aes_agent_i is configured active model and contains a
aes_driver, aes_sequencer, and aes_monitor_i. The aes_driver not only can drive the interface to the DUT
(AES IP) with that transaction, but also can send a response to the aes_sequencer. The aes_driver receives
the transaction through the aes_sequencer. The aes_sequencer can control the flow of a series of sequences
that are created either with constrained random or directed data. And the aes_sequence represents a
sequence item as a packet of data. The aes_monitor_i can capture the transactions and verify validity. The
aes_agent_o is configured passive mode and only contains aes_monitor_o. Its action is capturing the
aes_sequence_item and passing the information along to the aes_scoreboard.

The aes_sequence_item contains the configuration of AES IP, including the key, the plaintext, the
ciphertext and enable signals and so on. Red points represent aes_sequence_item, which reflects the flow
direction of data package as shown in Figure 2. The basic function of the aes_scoreboard is to check the
correctness of the AES IP design. It can compare the output data of the aes_model and the aes_monitor_o.

AES IP VERIFICATION SCHEME

Both constrained random and directional incentives can be applied in AES verification platform

depended on the basic idea of generation incentive. Firstly, 128 bits key and 128 bits datain of
aes_sequence_item use the constrained random. One bit aesready signal uses directional incentive.
According to the protocol, data package could not transmit if the aesready=1'b1. Data package began to
transmit if the aesready=1'b0.

AES IP VERIFICATION RESULTS

When the verification engineer has built the UVM verification platform, including the test, the
environment and the sequence section. So, now we should pass them into the top_tb via the uvm_config_db
using the set() function call, and start UVM using run_test() method. After running, we can verify the AES
IP design using waveform, functional coverage, code coverage and scoreboard results, making it easier to
observe the correctness.

444

Advances in Engineering Research (AER), volume 82

FUNCTIONAL COVERAGE

Functional coverage[6] is an important part of verifying the AES IP design. It is an integral part of the

SystemVerilog[7] language, including covergroup, coverpoint, bins definitions, and a sample() method. In
this AES IP verification platform, the aes_driver is an ideal location for collecting functional coverage
information. For instance, the codes for covergroup in the aes_driver is to sample the aesready signal as
shown in Figure 3.

Figure 3. Codes and results for covergroup.

As shown in Table 1, this platform can achieve 100% functional coverage. The covergroup name is
aes_sequence_item_cg, there is three coverpoint: key, datain and aesready. In the aes_seq_lib.sv, there are
different sequences. Reusable testcases[5] can generate a new sequence by overloading an exsisting
sequence.

TABLE I. FUNCTION COVERAGE
Name Score Covergroup

Function Groups 100% 100%
Aes_sequence_item_cg 100% 100%

CODES COVERAGE

As shown in Table 2 we can see that branch coverage and condition coverage reaches 100%. Toggle

coverage reaches 96.84%, because some signals are not required to flip the state. And line coverage
achieves 95.03%, because there are some default states in the KeyExpander.v and a lot of redundancy in
this sequence.

445

Advances in Engineering Research (AER), volume 82

TABLE 2. CODES COVERAGE
Name Line Toggle Branch Condition

Top_tb 95.03% 96.84% 100% 100%
I_aes 96.48% 96.02% 100% 100%

SubBytes 99.62% 100% 100% -
ShiftRow 100% 100% 100% -

MixColumn 100% 100% 100% -
KeySelector 100% 93.99% 100% -

KeyExpander 83.19% 97.32% 100% -
AddRoundkey 100% 100% 100% -

Input_if - 97.95% - -

SCOREBOARD RESULT AND WAVEFORM

Table 3 shows the scoreboard results of executing the aes_case0. From the log panel of VCS, actual

values and expect values compare successfully.
The essential role of a scoreboard in UVM platform is to verify that actual outputs from DUT match

predicted output values. After running, the DUT outputs can be found whether correct or not. If finding
errors, having access to these inputs can help in debugging the incorrect results.

TABLE 3. Results of case0_sequence.

Name Size Value
Key 128 'h68bcc51ba9db1bd0faf15e9ad8a5afb9

Datain 128 'h18fae4206afb51493ba0bede0c46a991
Dataout 128 'h4f148d11dd4918106fab166ff6fda6ed

Aesready 1 'h0
Aesdone 1 'h0

As specified in Figure 4, there is a waveform of running aes_case0. The key, aesready, datain and

dataout all meet the requirements.

Figure 4. Waveform of AES IP.

AUTOMATIC TESTCASES GENERATION

When we need to verify the IP level or SoC level with a large number of testcases, it will increase time
costs and the manpower to manually add and modify testcases. So, automatic testcases generation can
simplify steps by script. As shown in Figure 5 we can see the flow chart.

446

Advances in Engineering Research (AER), volume 82

Figure 5. Script flow chart.

All the testcases which are in the validation platform will be put in a folder, firstly, method will

generate a file that contains all the testcases name.
Then, according to the words that appear on the terminal selects whether customizing the testcase

variables, or automatically running all the testcases of the verification platform. As shown in Figure 6.

Figure 6. Script flow chart.

If choosing “ Yes”, it will automatically run all the testcases. The practice is to run the script "run_tc",

and change name of "+UVM_TESTCASE = xxx", which replacing case name with xxx. But, testcases will
need to be selected by verification engineer if choosing “ No”. They can input case name in the terminal
and input the case variables that they want to get these results. In the end, the results that we want will be
saved in a log file.

SUMMARY

By analyzing the verification results, coverage and waveform are all achieved the expected
requirements. In this paper, it has built a reusable verification platform of AES IP environment by UVM
methodology, and verified a AES IP design. The UVM mechanism used is refered to as an override. This

447

Advances in Engineering Research (AER), volume 82

functionality is useful to change sequence functionality by using the constrained random and directed tests.
It makes verification more efficient and reusable. And using the verification platform with automatic
generation can advance the speed of verification quickly and shorten the verification time. The results show
that 100% functional coverage and waveform have been reached on the AES IP verification platform.
According to the results of UVM verification platform, the AES IP design is successful.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (No. 61204040), and

Beijing Municipal Natural Science Foundation (No. 4152004).

REFERENCES

1. TIAN Jin and WANG Xiao Li, Microeletronics & Computer, 29, p.86 (2012).
2. Michael Mefenza, Franck Yonga and Christophe Bobda, 15th International Microprocessor Test and

Verification Workshop, p.16 (2014).
3. Zhang Jie and ZHU Li Juan, Software Guide, p.95 (2007).
4. Zhao Xuemei, Natural Sciences, 24 p.105 (2010).
5. Zhou Jun and Chang Guofeng, Bulletin of Science and Technology, 28, p.70.
6. He Dong Ming, China Integrated Circult, p.74 (2015).
7. Martin Keaveneyt and Anthony McMahont, ISSC 2008, p.325(2008).

448

Advances in Engineering Research (AER), volume 82

	ABSTRACT:This paper applied UVM (Universal Verification Methodology), an advanced verification methodology which was based on SystemVerilog language to build AES (Advanced Encryption Standard) IP verification platform and environment. Functional verif...
	INTRODUCTION
	AES ALGORITHM
	UVM VERIFICATION PLATFORM
	AES IP VERIFICATION ENVIRONMENT
	AES IP VERIFICATION SCHEME

	AES IP VERIFICATION RESULTS
	FUNCTIONAL COVERAGE
	CODES COVERAGE
	SCOREBOARD RESULT AND WAVEFORM

	AUTOMATIC TESTCASES GENERATION
	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

