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Abstract—For improving optimizing ability of Inver-over 
operator in solving TSP, we improved the Inver-over operator 
and employing annealing skill.  First, adopted two strategies to 
improve Inver-Over operator, one is drawing more optimal edges 
into the population as earlier mainly through the “2e-switch-1p-
shift-opt”, and another is avoiding nonfunctional iterations 
considering the similarity of the population, these improvements 
increased the converging speed evidently. Second, employed 
annealing skill in the improved population algorithm, by 
designing the temperature function with the characteristics of the 
population, the temperature of the annealing process presented 
self-adaptive and two-stage decreasing characteristic, the 
temperature can achieve peak and then decrease periodically, 
and the peak was decreased gradually. The individuals in the 
population except the best one can jump present local area with 
large probability and search in new area. The experiment results 
showed that the proposed algorithm overcomes GT algorithm in 
the con-verging speed and final tour obviously. 

Keywords-TSP; population intelligent algorithm; inver-over 
operator; simulated annealing algorithm; iterative annealing  

I. INTRODUCTION 

An instance of the traveling salesman problem (TSP) 
consists of a set of cities and the pairwise distances between 
these cities. The goal is to find the shortest tour that visits 
every city exactly once and returns to the starting city in the 
end. TSP is one of the most studied optimization problems, the 
research on TSP can be used in communication control, 
network routing and designing of LSIC, etc.. 

TSP belongs to the class of NP-hard problems that are 
computationally intensive to solve [1]. Many researchers have 
tried to solve it with population intelligent algorithm. The GT 
algorithm, proposed by Guo et al[2], is a population intelligent 
algorithm for solving TSP specially. The kernel of GT is Inver-
over operator and it is easy to program and efficient for small-
scale instances. However, for large-scale instances, the 
operator converges with low speed and it is apt to be trapped 
in a local optimum. 

We proposed an algorithm, in which Inver-Over operator 
and simulated annealing algorithm are combined. In the 
proposed algorithm, we first modify the Inver-over operator 
with two strategies: one is drawing more optimal edges into 
the population as earlier, and another is avoiding 
nonfunctional iterations. For implementing the strategy one, 
the better tour produced by the inverse operations is kept 

promptly and “2e-switch-1p-shift-opt” is executed on a tour 
chosen randomly from the population after one population 
iteration. For implementing the second strategy, at least two 
inverse operations are required in one tour iteration and a tour 
is mutated after one population iteration. The improved GT 
algorithm (IGT) improves converging speed greatly at the 
early period. 

Then, we employed the annealing skill in IGT to design 
population iterative annealing algorithm (PIA). By designing 
the temperature function with the characteristics of the 
population, the temperature of the annealing process presented 
self-adaptive and two-stage decreasing characteristic, the 
temperature can achieve peak and then decrease periodically, 
and the peak was decreased gradually. The individuals in the 
population except the best one can jump present local area 
with large probability and search in new area. The PIA 
algorithm can base on the characteristics of the TSP and 
population to control the temperature automatically, so to 
avoid testing temperature parameters repeatedly.  

Finally, we test the PIA algorithm on TSPLIB for 
comparing with GT algorithm. The results showed that PIA 
possesses better converging speed and global optimizing 
ability. For the instances with city number fewer than 280, PIA 
achieves optimal solutions in 30 seconds every time. Under 
the circumstances of getting the optimal solution, the average 
time of PIA is less than 20% of GT algorithm. For large scale 
instances, PIA maintains optimizing ability when the evolution 
of GT keeps halted. 

II. RELATED WORK 

A. Inver-over Operator 

Many population intelligent algorithms were employed to 
solve TSP, including the genetic algorithm[3,4], particle swarm 
optimization[5], ant colony optimization[6,7], etc.. Each kind 
of population intelligent algorithms possesses coincident 
arithmetic procedure, the differences of the effects are decided 
mainly by the operators. 

The Inver-over operator includes the crossover operation 
and mutated operation implicitly. It has been proven that the 
performance of Inver-over operator overcomes the genetic 
operators of the order cross (OX), circle cross (CX) and edge 
recombination crossover (ER), etc.[8]. 
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In the Inver-over operator, the traversal order of the city is 
used to encode the solution, for example, one tour of 6 cities is 
encoded as S=(2,3,4,1,5,6). The operator is described as 
following. 

 

Randomly initialize the population P 
While termination-condition is not satisfied  
 For each individual Si∈P  

 S' = Si 
 Select randomly a city c from S'  
 Loop 
 If rand(0..1) < pr   //pr=0.02 generally 
  Select c' from the remained cities in S'  

Else 
Select randomly an individual from P  
Assign to c' the next city of c in the individual  
If c' is near to c in S'  

Exit loop 
Inverse the section from the next city of c to c' in S' 
c =c' 

End loop 
End for 
If eval(S') <eval(Si)   //eval(*) is the length function  

Si = S'  
End while 

 

Inver-over operator executes the population iterations until 
the termination-condition is satisfied. During every population 
iteration, each tour in the population is iterated. In each tour 
iteration, a copy of tour S is created as S', then inverse 
operation is executed several times on S' by mutating (when 
rand<pr) or crossing over (when rand≥pr). Lastly, S is 
replaced with S' if S' is better.  

Inver-over operator is easy to program. It achieves better 
effect for the instances with scales fewer than 100 cities. But 
for large scale instances, it is difficult to jump out the local 
optimum. Using heuristic methods (e.g., nearest insertion, 
farthest insertion, neighborhood method) [9] can improve the 
optimization speed of Inver-over operator at early stage, but 
there is no practical aid for searching the global optimal 
solution. 

B. Application of Annealing Algorithm in TSP 

The simulated annealing algorithm was proposed by 
Kirkpatrick et al in 1983 [10]. A typical implementation of the 
simulated annealing algorithm is shown as following, in which, 
Rs is the solution space and r(T) is a function to reduce the 
temperature T. 

 

Choose an initial solution S 
Set T=T0 
Repeat until system is frozen 

Do the following cycle l times 
Make a perturbation in S and generate S'∈Rs 
Set ΔC=C(S')-C(S) 
If ΔC≤0 then S= S' 
If ΔC>0 then set S= S' with probability exp(-ΔC/T) 
Set T=r(T) 

Show S 

 

The simulated annealing algorithm has been applied to TSP 
and gained much development. For example, Yang applied 
deterministic annealing algorithm to the travelling salesman 
problem [11], Baranwal applied deterministic annealing 
algorithm for approximating the solutions to the multiple TSP 
and other variants on the TSP [12]. 

With the development of the population intelligent 
algorithm, some algorithms combining with population 
intelligence and annealing algorithm are produced for solving 
TSP. Eswarawaka, Lan and Yao proposed their individual 
algorithm combining with simulated annealing algorithm and 
genetic algorithm [13-15], Honjo, Cheng proposed algorithms 
combining with simulated annealing and particle swarm 
optimization [16,17], Guzman proposed a framework for the 
parallel solution of combinatorial problems implementing tabu 
search and simulated annealing algorithms[18], Wang proposed 
a multi-agent simulated annealing algorithm [19]. 

The same strategy for these combined algorithms is: using 
population intelligent for iterative optimizing and using 
annealing algorithm to jump out the local optimum. A key 
problem needed to solve in the combined algorithms is how to 
set and control the temperature. At present, the most frequently 
used method is repeatedly testing the initial temperature T0 and 
the arguments in function r(T) for each TSP instance, it 
produces difficulty for the application. 

The template is used to format your paper and style the text. 
All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note peculiarities. 
For example, the head margin in this template measures 
proportionately more than is customary. This measurement and 
others are deliberate, using specifications that anticipate your 
paper as one part of the entire proceedings, and not as an 
independent document. Please do not revise any of the current 
designations. 

III. POPULATION ITERATIVE ANNEALING ALGORITHM WITH 

IMPROVED INVER-OVER OPERATOR 

A. Improve Inver-over Operator 

First modified strategy is drawing more optimal edges 
(edges in the optimal tour) into the population as earlier. It is 
based on two intuitions: (1) it should be the high probability 
event that the shorter tours include more optimal edges than the 
longer tours; (2) drawing more optimal edges into the 
population as earlier can improve the converging speed of the 
algorithm. The reliabilities of these two intuitions are validated 
by experiments in Section 4. 

For drawing more optimal edges into the population as 
earlier, the Inver-Over operator is modified as: (1) Generate 
initial solution by the neighborhood method, the size of the 
neighborhood is set as 6. (2) For each inverse operation to S’, 
compute the incrementing value of the length of tour, if the 
incrementing value is less than 0, replace S with S' at once. (3) 
After each population iteration, choose one tour randomly and 
execute a local optimization called “2e-switch-1p-shift-opt”.  

The “2e-switch-1p-shift-opt” means, the tour is traversed in 
order and for present city c1, searching city c2 in its 
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neighborhood (the neighborhood size is set as 6), trying to 
switch 2 edges as FIGURE 1. or move 1 point as FIGURE 2. 

 
 

FIGURE I. 2EDGES-SWITCH 

 
 

FIGURE II. 1-POINT-SHIFT 

“2e-switch-1p-shift-opt” on a tour is implemented as 
following: 

 

For i=1 to n 
Assign to c1 the ith city in the tour 
For each c2 in the neighborhood of c1      
     Assign c3 the next city to c1 in the tour 
            IF (c2== c3) continue 

Assign to c4 the city next to c2 in the tour  
Assign to c5 the city previous to c2 in the tour 
Set Δeval_1= d(c1, c2) + d(c3,c4) - d(c1, c3) - d(c2,c4)  
Set Δeval_2= d(c1, c2) + d(c2, c3) + d(c4,c5)  

- d(c1, c3) - d(c2,c4)- d(c4,c5) 
If Δeval_1<0 and Δeval_1<Δeval_2 

                Inverse the section from c3 to c2 
Else if Δeval_2<0 and Δeval_2<Δeval_1 

Move c2 to the point of c3 
 End for 

End for 

 

The second strategy is to avoid the void iterations. This 
strategy is based on the quantity analysis of the population 
similarity. The population similarity reveals the ratio of same 
edges included in the tours in the population to the total edges. 

The population similarity is computed as formula (1), in 
which, P is population, Sbest is the present best individual in the 
population, n is the number of the cities, m is the number of 
individuals in the population, same(S1,S2) is the number of 
same edges in the tours S1 and S2. ݉݅ݏ(ܲ, ܵ௕௘௦௧) = ∑ ௦௔௠௘(ௌ೔,	ௌ್೐ೞ೟)೘೔సభ ௠×௡ × 100%         (1) 

The variation of the population similarity can be seen in 
Figure 2 when the Inver-Over operator is executed.  

 
FIGURE III. VARIATION OF POPULATION SIMILARITY 

The Figure 2 shows that when the algorithm is executed, 
the population similarity is becoming large gradually. When 
the population similarity achieves 0.8, the similarity of two 
tours is at least 0.6. The probability of r times hybridizing for 
the tours is less than 0.4r, so the tour iteration produce none 
practical operation with high probability. 

For avoiding the void iterations, the modified methods are: 
(1) for each tour iteration, at least two inverse operations are 
executed; (2) after each population iteration, choose one tour 
randomly from the population except the best tour and execute 
mutating operation on it as following. 

 

Select randomly city c1 in the tour  
Assign c3 the next city to c1 in the tour 
Select randomly c2 in the neighborhood of c1  

    IF (c2≠c3)  
Assign to c4 the city next to c2 in the tour  
Assign to c5 the city previous to c2 in the tour  
IF rand(0..1)<0.5 

Inverse the section from c3 to c2 
Else  

Move c2 to the point of c3 

 

All the modified method is described in detail in Section 3, 
which is called IGT algorithm. The experiments in Section 4 
show that IGT overcomes GT in speed greatly. 

B. Self-Adaptive Population Iterative Annealing Method 

In Inver-Over operator, after population was iterated one 
time, the individuals in the population will become better or 
maintain unchanged. The worsen tour will not be accepted. 
When the scale of the problem is larger, it will be trapped in 
local optimum easily. Using annealing algorithm, the worsen 
tour can be accepted for jumping out the local optimal solution, 
so to improve the ability to search the global optimal solution. 

We use the operation contained in the Inver-over operator 
to produce new tour, none new operations is needed to attach. 

For control the temperature. the characteristic of population 
is used to design the temperature function. The population 
temperature T is computed as following formula (2), where 
eval(Sbest ) is the length of present best solution, k the time of 
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iteration of the algorithm, n the number of cities and % the 
modulo operator. ܶ = ඥ݈݁ܽݒ(ܵ௕௘௦௧) × （௞		%	௡)௡ 							                 (2) 

With the formula (2), T is changed periodically as n. During 
each period, the population experiences temperature rising and 
then annealing. The length of the present best solution descends 
continually as the algorithm executing. The peak value of the 
temperature of each period descends along to reveal bipolar 
annealing characteristic. 

On the base of keeping the elite individual, the worsen tour 
is accepted according to the following: 		If			S ≠ Sୠୣୱ୲	and	rand(0. .1) < exp ቀ− ∆ୣ୴ୟ୪୘ ቁ then		S = S′			                                                                 (3) 

C. Proposed Algorithm 

Combining the discussion in Sections 3.1 and 3.2, we 
propose the population iterative annealing algorithm (PIA) as 
following. 

 

Randomly initialize the population P  
While the terminal-condition is not satisfied 

Choose one tour and execute “2e-switch-1p-shift” 
Choose one tour and execute one mutated operation 
Compute the temperature T according the formula (2) 
For each individual Si in P 

S' = Si 
inver_time=0 
Choose one city c from S' 
Loop 
If rand(0..1)<pr  //pr is 0.02 generally 

Choose c' from remained cities in S'  
Else 

Choose another individual from P randomly 
Assign to c' the next city of c in chosen individual 
If c is near to c' in S' and  inver_time>1  

Accept worsen solution according to the formula (3) 
             Exit loop 

Else  
inverse the section from the next city of c to c' in S' 
inver_time++ 

If incrementing length of tour is less than 0 
Si= S' 

c=c' 
End loop 

End for 
End while 

 

Several operations are added in the PIA algorithm on the 
base of Inver-Over operator. The costs of these operations in 
each iteration are: O(n) for “2e-switch-1p-shift-opt”, O(1) for 
tour mutation, O(1) for computing T, O(m) for computing 
probability to accept worse solution. The added cost can be 
omitted almost comparing with the cost of the Inver-over 
operator. 

IV. EXPERIMENTS 

We test the performances of GT and PIA for the instances 
in TSPLIB. The size of the population is set as 40, the longest 
time 30 seconds, and each algorithm has been executed 100 
times. The average results (avg.), probability converging to the 
optimal solutions (pro.), average time converging to the 
optimal solutions in second(time) have been compared. The 
results have been shown in the table 1. 

The Table 1 shows that for the instances with city number 
fewer than 280, PIA achieves optimal solutions every time in 
30 seconds, it is better obviously than GT algorithm. Under the 
circumstances of getting the optimal solution, the average time 
PIA needed is less than 20% of GT algorithm. 

TABLE I.   RESULTS OF GT AND PIA FOR THE TSP INSTANCES 

Instance optimal GT	 PIA

Avg. Pro.	 Time	 Avg. Pro. Time

ATT48 33522 33534 0.8	 2.2	 33522	 1.0 0.36EIL51 426 426.36 0.74	 9.2	 426	 1.0 0.55KROD100 21294 21351 0.045	 10.8	 21294	 1.0 1.3EIL101 629 636.4 0.02	 25.8	 629	 1.0 3.1PR144 58537 58639 0.04	 15.8	 58537		 1.0 4.4A280 2579 2624.2 0.0	 ----	 2579	 1.0 4.2
The Table 1 reveals one phenomenon also: the running time 

of PIA achieving the optimal solution is not positively related 
to the number of cities (see the cases of EIL101, PR144 and 
A280). The phenomenon could be resulted for two reasons: (1) 
The effects of the city neighborhood size setting. With the 
different characteristic of the city distribution, the size may be 
different. Through the repeat testing, the size is set as 6. There 
is not efficient method to decide the size which is adaptive 
pervasively. (2) The instance of TSP may have many optimal 
solutions; it reduces the difficulty of searching the optimal 
solution. For the case A280, we have found many tours with 
minimized length 2579. 

For further comparison of performances of GT, IGT and 
PIA, they are applied to PR1002 separately, the iteration time is 
set as 30000, and the converging curves of three algorithms 
were shown in the Figure 3.  

The Figure 3A shows full converging curves of three 
algorithms, it indicates that the converging speed of the 
algorithms IGT and PIA overcome GT obviously. It is hard to 
see the difference of IGT and PIA in the Figure 3A. Enlarging 
the local area of Figure 3A to 3B, the converging curves from 
the generations 500 to 30000 show that, on the base of IGT, 
PIA has strong ability for searching global optimal solution. 
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FIGURE IV. CONVERGING CURVES OF THREE ALGORITHMS ON 
PR1002. 

 
 

FIGURE V. LOCAL CONVERGING CURVES OF IGT AND PIA ON 
PR1002 

V. CONCLUSION 

We adopted two strategies to improve Inver-over operator, 
one is drawing more optimal edges into the population as 
earlier, and another is avoiding void iterations. The two 
strategies are realized in improved algorithm, and then, we 
employed the annealing skill in IGT to design population 
iterative annealing algorithm (PIA). By designing the 
temperature function with the characteristics of the population, 
the temperature of the annealing process presented self-
adaptive and two-stage decreasing characteristic. During each 
period, the individuals in the population except the best one can 
jump present local area with large probability and search in 
new area. Comparing the new algorithm to GT, the converging 
speed and final solution are better obviously. 

We have found that, “2e-switch-1p-shift-opt” takes a key 
role in the algorithm. Keeping the framework of our algorithm, 
if “2e-switch-1p-shift-opt” can be replaced by other operator 
with approximate time and better effect, the performance of the 
algorithm may be improved further. 
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