
Population Iterative Annealing Algorithm with
Improved Inver-over Operator for TSP

Zhi Yuan1 and Yuanping Zhang 2, *
1South China Institute of Software Engineering, Guangzhou University, Guangzhou, 510990, P. R. China

2School of Computer and Educational Software, Guangzhou University, 510006, P. R. China
*Corresponding author

Abstract—For improving optimizing ability of Inver-over
operator in solving TSP, we improved the Inver-over operator
and employing annealing skill. First, adopted two strategies to
improve Inver-Over operator, one is drawing more optimal edges
into the population as earlier mainly through the “2e-switch-1p-
shift-opt”, and another is avoiding nonfunctional iterations
considering the similarity of the population, these improvements
increased the converging speed evidently. Second, employed
annealing skill in the improved population algorithm, by
designing the temperature function with the characteristics of the
population, the temperature of the annealing process presented
self-adaptive and two-stage decreasing characteristic, the
temperature can achieve peak and then decrease periodically,
and the peak was decreased gradually. The individuals in the
population except the best one can jump present local area with
large probability and search in new area. The experiment results
showed that the proposed algorithm overcomes GT algorithm in
the con-verging speed and final tour obviously.

Keywords-TSP; population intelligent algorithm; inver-over
operator; simulated annealing algorithm; iterative annealing

I. INTRODUCTION

An instance of the traveling salesman problem (TSP)
consists of a set of cities and the pairwise distances between
these cities. The goal is to find the shortest tour that visits
every city exactly once and returns to the starting city in the
end. TSP is one of the most studied optimization problems, the
research on TSP can be used in communication control,
network routing and designing of LSIC, etc..

TSP belongs to the class of NP-hard problems that are
computationally intensive to solve [1]. Many researchers have
tried to solve it with population intelligent algorithm. The GT
algorithm, proposed by Guo et al[2], is a population intelligent
algorithm for solving TSP specially. The kernel of GT is Inver-
over operator and it is easy to program and efficient for small-
scale instances. However, for large-scale instances, the
operator converges with low speed and it is apt to be trapped
in a local optimum.

We proposed an algorithm, in which Inver-Over operator
and simulated annealing algorithm are combined. In the
proposed algorithm, we first modify the Inver-over operator
with two strategies: one is drawing more optimal edges into
the population as earlier, and another is avoiding
nonfunctional iterations. For implementing the strategy one,
the better tour produced by the inverse operations is kept

promptly and “2e-switch-1p-shift-opt” is executed on a tour
chosen randomly from the population after one population
iteration. For implementing the second strategy, at least two
inverse operations are required in one tour iteration and a tour
is mutated after one population iteration. The improved GT
algorithm (IGT) improves converging speed greatly at the
early period.

Then, we employed the annealing skill in IGT to design
population iterative annealing algorithm (PIA). By designing
the temperature function with the characteristics of the
population, the temperature of the annealing process presented
self-adaptive and two-stage decreasing characteristic, the
temperature can achieve peak and then decrease periodically,
and the peak was decreased gradually. The individuals in the
population except the best one can jump present local area
with large probability and search in new area. The PIA
algorithm can base on the characteristics of the TSP and
population to control the temperature automatically, so to
avoid testing temperature parameters repeatedly.

Finally, we test the PIA algorithm on TSPLIB for
comparing with GT algorithm. The results showed that PIA
possesses better converging speed and global optimizing
ability. For the instances with city number fewer than 280, PIA
achieves optimal solutions in 30 seconds every time. Under
the circumstances of getting the optimal solution, the average
time of PIA is less than 20% of GT algorithm. For large scale
instances, PIA maintains optimizing ability when the evolution
of GT keeps halted.

II. RELATED WORK

A. Inver-over Operator

Many population intelligent algorithms were employed to
solve TSP, including the genetic algorithm[3,4], particle swarm
optimization[5], ant colony optimization[6,7], etc.. Each kind
of population intelligent algorithms possesses coincident
arithmetic procedure, the differences of the effects are decided
mainly by the operators.

The Inver-over operator includes the crossover operation
and mutated operation implicitly. It has been proven that the
performance of Inver-over operator overcomes the genetic
operators of the order cross (OX), circle cross (CX) and edge
recombination crossover (ER), etc.[8].

Modeling, Simulation and Optimization Technologies and Applications (MSOTA 2016)

Copyright © 2016, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 58

272

In the Inver-over operator, the traversal order of the city is
used to encode the solution, for example, one tour of 6 cities is
encoded as S=(2,3,4,1,5,6). The operator is described as
following.

Randomly initialize the population P
While termination-condition is not satisfied
 For each individual Si∈P

 S' = Si
 Select randomly a city c from S'
 Loop
 If rand(0..1) < pr //pr=0.02 generally
 Select c' from the remained cities in S'

Else
Select randomly an individual from P
Assign to c' the next city of c in the individual
If c' is near to c in S'

Exit loop
Inverse the section from the next city of c to c' in S'
c =c'

End loop
End for
If eval(S') <eval(Si) //eval(*) is the length function

Si = S'
End while

Inver-over operator executes the population iterations until
the termination-condition is satisfied. During every population
iteration, each tour in the population is iterated. In each tour
iteration, a copy of tour S is created as S', then inverse
operation is executed several times on S' by mutating (when
rand<pr) or crossing over (when rand≥pr). Lastly, S is
replaced with S' if S' is better.

Inver-over operator is easy to program. It achieves better
effect for the instances with scales fewer than 100 cities. But
for large scale instances, it is difficult to jump out the local
optimum. Using heuristic methods (e.g., nearest insertion,
farthest insertion, neighborhood method) [9] can improve the
optimization speed of Inver-over operator at early stage, but
there is no practical aid for searching the global optimal
solution.

B. Application of Annealing Algorithm in TSP

The simulated annealing algorithm was proposed by
Kirkpatrick et al in 1983 [10]. A typical implementation of the
simulated annealing algorithm is shown as following, in which,
Rs is the solution space and r(T) is a function to reduce the
temperature T.

Choose an initial solution S
Set T=T0
Repeat until system is frozen

Do the following cycle l times
Make a perturbation in S and generate S'∈Rs
Set ΔC=C(S')-C(S)
If ΔC≤0 then S= S'
If ΔC>0 then set S= S' with probability exp(-ΔC/T)
Set T=r(T)

Show S

The simulated annealing algorithm has been applied to TSP
and gained much development. For example, Yang applied
deterministic annealing algorithm to the travelling salesman
problem [11], Baranwal applied deterministic annealing
algorithm for approximating the solutions to the multiple TSP
and other variants on the TSP [12].

With the development of the population intelligent
algorithm, some algorithms combining with population
intelligence and annealing algorithm are produced for solving
TSP. Eswarawaka, Lan and Yao proposed their individual
algorithm combining with simulated annealing algorithm and
genetic algorithm [13-15], Honjo, Cheng proposed algorithms
combining with simulated annealing and particle swarm
optimization [16,17], Guzman proposed a framework for the
parallel solution of combinatorial problems implementing tabu
search and simulated annealing algorithms[18], Wang proposed
a multi-agent simulated annealing algorithm [19].

The same strategy for these combined algorithms is: using
population intelligent for iterative optimizing and using
annealing algorithm to jump out the local optimum. A key
problem needed to solve in the combined algorithms is how to
set and control the temperature. At present, the most frequently
used method is repeatedly testing the initial temperature T0 and
the arguments in function r(T) for each TSP instance, it
produces difficulty for the application.

The template is used to format your paper and style the text.
All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note peculiarities.
For example, the head margin in this template measures
proportionately more than is customary. This measurement and
others are deliberate, using specifications that anticipate your
paper as one part of the entire proceedings, and not as an
independent document. Please do not revise any of the current
designations.

III. POPULATION ITERATIVE ANNEALING ALGORITHM WITH

IMPROVED INVER-OVER OPERATOR

A. Improve Inver-over Operator

First modified strategy is drawing more optimal edges
(edges in the optimal tour) into the population as earlier. It is
based on two intuitions: (1) it should be the high probability
event that the shorter tours include more optimal edges than the
longer tours; (2) drawing more optimal edges into the
population as earlier can improve the converging speed of the
algorithm. The reliabilities of these two intuitions are validated
by experiments in Section 4.

For drawing more optimal edges into the population as
earlier, the Inver-Over operator is modified as: (1) Generate
initial solution by the neighborhood method, the size of the
neighborhood is set as 6. (2) For each inverse operation to S’,
compute the incrementing value of the length of tour, if the
incrementing value is less than 0, replace S with S' at once. (3)
After each population iteration, choose one tour randomly and
execute a local optimization called “2e-switch-1p-shift-opt”.

The “2e-switch-1p-shift-opt” means, the tour is traversed in
order and for present city c1, searching city c2 in its

Advances in Computer Science Research, volume 58

273

neighborhood (the neighborhood size is set as 6), trying to
switch 2 edges as FIGURE 1. or move 1 point as FIGURE 2.

FIGURE I. 2EDGES-SWITCH

FIGURE II. 1-POINT-SHIFT

“2e-switch-1p-shift-opt” on a tour is implemented as
following:

For i=1 to n
Assign to c1 the ith city in the tour
For each c2 in the neighborhood of c1
 Assign c3 the next city to c1 in the tour
 IF (c2== c3) continue

Assign to c4 the city next to c2 in the tour
Assign to c5 the city previous to c2 in the tour
Set Δeval_1= d(c1, c2) + d(c3,c4) - d(c1, c3) - d(c2,c4)
Set Δeval_2= d(c1, c2) + d(c2, c3) + d(c4,c5)

- d(c1, c3) - d(c2,c4)- d(c4,c5)
If Δeval_1<0 and Δeval_1<Δeval_2

 Inverse the section from c3 to c2
Else if Δeval_2<0 and Δeval_2<Δeval_1

Move c2 to the point of c3
 End for

End for

The second strategy is to avoid the void iterations. This
strategy is based on the quantity analysis of the population
similarity. The population similarity reveals the ratio of same
edges included in the tours in the population to the total edges.

The population similarity is computed as formula (1), in
which, P is population, Sbest is the present best individual in the
population, n is the number of the cities, m is the number of
individuals in the population, same(S1,S2) is the number of
same edges in the tours S1 and S2. ݉݅ݏ(ܲ, ܵ௕௘௦௧) = ∑ ௦௔௠௘(ௌ೔,	ௌ್೐ೞ೟)೘೔సభ ௠×௡ × 100% (1)

The variation of the population similarity can be seen in
Figure 2 when the Inver-Over operator is executed.

FIGURE III. VARIATION OF POPULATION SIMILARITY

The Figure 2 shows that when the algorithm is executed,
the population similarity is becoming large gradually. When
the population similarity achieves 0.8, the similarity of two
tours is at least 0.6. The probability of r times hybridizing for
the tours is less than 0.4r, so the tour iteration produce none
practical operation with high probability.

For avoiding the void iterations, the modified methods are:
(1) for each tour iteration, at least two inverse operations are
executed; (2) after each population iteration, choose one tour
randomly from the population except the best tour and execute
mutating operation on it as following.

Select randomly city c1 in the tour
Assign c3 the next city to c1 in the tour
Select randomly c2 in the neighborhood of c1

 IF (c2≠c3)
Assign to c4 the city next to c2 in the tour
Assign to c5 the city previous to c2 in the tour
IF rand(0..1)<0.5

Inverse the section from c3 to c2
Else

Move c2 to the point of c3

All the modified method is described in detail in Section 3,
which is called IGT algorithm. The experiments in Section 4
show that IGT overcomes GT in speed greatly.

B. Self-Adaptive Population Iterative Annealing Method

In Inver-Over operator, after population was iterated one
time, the individuals in the population will become better or
maintain unchanged. The worsen tour will not be accepted.
When the scale of the problem is larger, it will be trapped in
local optimum easily. Using annealing algorithm, the worsen
tour can be accepted for jumping out the local optimal solution,
so to improve the ability to search the global optimal solution.

We use the operation contained in the Inver-over operator
to produce new tour, none new operations is needed to attach.

For control the temperature. the characteristic of population
is used to design the temperature function. The population
temperature T is computed as following formula (2), where
eval(Sbest) is the length of present best solution, k the time of

Advances in Computer Science Research, volume 58

274

iteration of the algorithm, n the number of cities and % the
modulo operator. ܶ = ඥ݈݁ܽݒ(ܵ௕௘௦௧) × （௞		%	௡)௡ 							 (2)

With the formula (2), T is changed periodically as n. During
each period, the population experiences temperature rising and
then annealing. The length of the present best solution descends
continually as the algorithm executing. The peak value of the
temperature of each period descends along to reveal bipolar
annealing characteristic.

On the base of keeping the elite individual, the worsen tour
is accepted according to the following: 		If			S ≠ Sୠୣୱ୲	and	rand(0. .1) < exp ቀ− ∆ୣ୴ୟ୪୘ ቁ then		S = S′			 (3)

C. Proposed Algorithm

Combining the discussion in Sections 3.1 and 3.2, we
propose the population iterative annealing algorithm (PIA) as
following.

Randomly initialize the population P
While the terminal-condition is not satisfied

Choose one tour and execute “2e-switch-1p-shift”
Choose one tour and execute one mutated operation
Compute the temperature T according the formula (2)
For each individual Si in P

S' = Si
inver_time=0
Choose one city c from S'
Loop
If rand(0..1)<pr //pr is 0.02 generally

Choose c' from remained cities in S'
Else

Choose another individual from P randomly
Assign to c' the next city of c in chosen individual
If c is near to c' in S' and inver_time>1

Accept worsen solution according to the formula (3)
 Exit loop

Else
inverse the section from the next city of c to c' in S'
inver_time++

If incrementing length of tour is less than 0
Si= S'

c=c'
End loop

End for
End while

Several operations are added in the PIA algorithm on the
base of Inver-Over operator. The costs of these operations in
each iteration are: O(n) for “2e-switch-1p-shift-opt”, O(1) for
tour mutation, O(1) for computing T, O(m) for computing
probability to accept worse solution. The added cost can be
omitted almost comparing with the cost of the Inver-over
operator.

IV. EXPERIMENTS

We test the performances of GT and PIA for the instances
in TSPLIB. The size of the population is set as 40, the longest
time 30 seconds, and each algorithm has been executed 100
times. The average results (avg.), probability converging to the
optimal solutions (pro.), average time converging to the
optimal solutions in second(time) have been compared. The
results have been shown in the table 1.

The Table 1 shows that for the instances with city number
fewer than 280, PIA achieves optimal solutions every time in
30 seconds, it is better obviously than GT algorithm. Under the
circumstances of getting the optimal solution, the average time
PIA needed is less than 20% of GT algorithm.

TABLE I. RESULTS OF GT AND PIA FOR THE TSP INSTANCES

Instance optimal GT	 PIA

Avg. Pro.	 Time	 Avg. Pro. Time

ATT48 33522 33534 0.8	 2.2	 33522	 1.0 0.36EIL51 426 426.36 0.74	 9.2	 426	 1.0 0.55KROD100 21294 21351 0.045	 10.8	 21294	 1.0 1.3EIL101 629 636.4 0.02	 25.8	 629	 1.0 3.1PR144 58537 58639 0.04	 15.8	 58537		 1.0 4.4A280 2579 2624.2 0.0	 ----	 2579	 1.0 4.2
The Table 1 reveals one phenomenon also: the running time

of PIA achieving the optimal solution is not positively related
to the number of cities (see the cases of EIL101, PR144 and
A280). The phenomenon could be resulted for two reasons: (1)
The effects of the city neighborhood size setting. With the
different characteristic of the city distribution, the size may be
different. Through the repeat testing, the size is set as 6. There
is not efficient method to decide the size which is adaptive
pervasively. (2) The instance of TSP may have many optimal
solutions; it reduces the difficulty of searching the optimal
solution. For the case A280, we have found many tours with
minimized length 2579.

For further comparison of performances of GT, IGT and
PIA, they are applied to PR1002 separately, the iteration time is
set as 30000, and the converging curves of three algorithms
were shown in the Figure 3.

The Figure 3A shows full converging curves of three
algorithms, it indicates that the converging speed of the
algorithms IGT and PIA overcome GT obviously. It is hard to
see the difference of IGT and PIA in the Figure 3A. Enlarging
the local area of Figure 3A to 3B, the converging curves from
the generations 500 to 30000 show that, on the base of IGT,
PIA has strong ability for searching global optimal solution.

Advances in Computer Science Research, volume 58

275

FIGURE IV. CONVERGING CURVES OF THREE ALGORITHMS ON
PR1002.

FIGURE V. LOCAL CONVERGING CURVES OF IGT AND PIA ON
PR1002

V. CONCLUSION

We adopted two strategies to improve Inver-over operator,
one is drawing more optimal edges into the population as
earlier, and another is avoiding void iterations. The two
strategies are realized in improved algorithm, and then, we
employed the annealing skill in IGT to design population
iterative annealing algorithm (PIA). By designing the
temperature function with the characteristics of the population,
the temperature of the annealing process presented self-
adaptive and two-stage decreasing characteristic. During each
period, the individuals in the population except the best one can
jump present local area with large probability and search in
new area. Comparing the new algorithm to GT, the converging
speed and final solution are better obviously.

We have found that, “2e-switch-1p-shift-opt” takes a key
role in the algorithm. Keeping the framework of our algorithm,
if “2e-switch-1p-shift-opt” can be replaced by other operator
with approximate time and better effect, the performance of the
algorithm may be improved further.

REFERENCES
[1] T. Bektas, The multiple traveling salesman problem: an overview of

formulations and solution procedures, Omega, Vol.34, no.3(2006), 209–
219.

[2] T. Guo, Z. Michalewicz, Inver-over operator for the TSP, Lecture Notes
in Computer Science, 1498(1998), 803-812.

[3] M. Gorges-Schleuter, Asparagos96 and the traveling salesman problem,
Proceedings of the 1997 IEEE Internation Conference on Evolutionary
Computation, (1997), 171-174.

[4] Y. Nagata, S. Kobayashi, Edge assembly crossover: A high-power
genetic algorithm for the traveling salesman problem. In: Proc. 7th
International Conference on Genetic Algorithms, (1997), 450-457.

[5] A. W. Mohemmed, N. C. Sahoo, T. K. Geok, Solving shortest path
probelm using particle swarm optimization. Applied Soft Computing,
8(4)(2008), 1643-1653.

[6] J. H. Yang, X. H. Shi, M. Marchese, et al, An ant colony optmiaztion
method for generalize TSP problem, Progress in Natural Science,
18(11)(2008), 1417-1422.

[7] Y. D. Zhang, L. N. Wu, S. H. Wang, et al, Improved ant colony
algorithm base on membership cloud models, Computer Engineering and
Applications, 47(14)(2011), 46-55.

[8] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, S. Dizdarevic,
Genetic algorithms for the traveling salesman problem: A review of
representations and operators. Artificial Intelligence Review,
13(2)(1999), 129-170.

[9] D. E. Rosenkrantz, R. E. Stearns, P. M. Lewis, An analysis of several
heuristics for the traveling salesman problem, SIAM Journal on
Computing, 6(1977), 563-581.

[10] [10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by
simulated annealing, Science, Vol. 220, no.4598(1983), 671–680.

[11] G. W. Yang, W. M. Zheng, D. X. Wang, X. M. LI, An Algorithm for
traveling Salesman Problem Using Deterministic Annealing, Journal of
Software, 1 (1999), 57-59.

[12] M. Baranwal, B. Roehl, S. M. Salapaka, A deterministic annealing
approach to the multiple traveling salesmen and related problems,
http://arxiv.org/pdf/1604.04169.pdf, 4(2016).

[13] R. Eswarawaka, S. K. N. Mahammad, B. E. Reddy, Genetic annealing
with efficient strategies to improve the performance for the NP-hard and
routing problems, Journal of Experimental and Theoretical Artificial
Intelligence, 27(2015), 779-788.

[14] S. N. Lan, W. G. Lin, Genetic algorithm optimization research based on
simulated annealing， 17th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), (2016), 491-494.

[15] M. H. Yao, N. Wang, L. P. Zhao, Improved simulated annealing
algorithm and genetic algorithm for TSP, Computer Engineering and
Applications, 49(14)(2013), 60-65.

[16] M. Honjo, H. Iizuka, M. Yamamoto, Insertion-based Particle Swarm
Optimization with local interaction, 7th International Conference on Soft
Computing and Intelligent Systems (SCIS) and 15th International
Symposium on Advanced Intelligent Systems (ISIS), (2014), 755-760.

[17] B. C. Cheng, H. Y. Lu, X. P. Xu, W. Q. Shen, Improved local search-
based chaotic discrete particle swarm optimization algorithm for solving
traveling salesman problem, Journal of Computer Applications,
36(1)(2016), 138-142.

[18] L. G. Guzman, E. D. N. Ruiz, C. J. Ardila, A novel framework for the
parallel solution of combinatorial problems implementing tabu search
and simulated annealing algorithms, 6th International Conference on
Computers, Communications and Control (ICCCC), 16 (2016), 259-263.

[19] C. Y. Wang, M. Lin, Y. W. Zhong, H. Zhang, Solving travelling
salesman problem using multiagent simulated annealing algorithm with
instance-based sampling, International Journal of Computing Science
and Mathematics, Vol. 6, no. 4(2015), 336–353.

Advances in Computer Science Research, volume 58

276

