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Abstract-In this paper, we present a novel color image
Demosaicking algorithm. The algorithm consists of two steps:
an interpolation step and a refinement step. The missing green
color information is first interpolated by using the color
channel difference. In the refinement step, a local weighted
directional interpolation method guided by the pre-
interpolated green channel is applied to refine the interpolation
results along the determined interpolation direction. Lastly,
post-processing is implemented to output the final
Demosaicked full color image. Compared with the latest
Demosaicking algorithms, experiments showed that the
proposed method provides superior performance in terms of
both objective and subjective image qualities.
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I INTRODUCTION

When currently available digital still color cameras based
on a single charge-coupled device (CCD) sensor capture a
color pixel, only one part of the color information of the
three color channels is captured. To reconstruct a full-color
image, an interpolation process, commonly referred to CFA
interpolation, is applied to estimate the other two missing
color pixel values at each pixel position. This process is
called CFA interpolation, or Demosaicking. Presently, the
most common CFA in digital cameras uses a color
arrangement based on the Bayer pattern [1, 2]. Fig. 1 shows a
7x7 window of Bayer CFA samples.

The color reproduction quality depends on the CFA
templates and the employed Demosaicking algorithms.
Various Demosaicking algorithms based on the Bayer
pattern [3-13] have been proposed in the past decades.
Recently developed methods include the successive
approximation (SA) method by Li [4], the directional linear
minimum mean square-error estimation (DL) method by
Zhang and Wu [5], a least-squares luma-chroma
demultiplexing (LSLCD) algorithm for Bayer Demosaicking
by Dubois et al. [6], an effective Demosaicking method
based on edge property (EDEP) by Chen and Chang [7], an

adaptive filtering for color filter array Demosaicking (AFD)
in the frequency domain proposed by Lian et al. [8], and the
edge strength filter (ESF) based method by Pekkucuksen and
Altunbasak [9]. A recent survey of Demosaicking methods
can be found in [14]. Some of these methods exploit intra
channel correlation (the color difference from green-to-green,
red-to-red, and blue-to-blue) to determine the interpolation
while others use the inter channel correlation (the color
difference from green-to-red, green-to-blue, and red-to-blue).
In the literature, methods use inter channel correlation have
yielded better performance.

In this paper, we present a new color image
Demosaicking algorithm. We first utilize the color difference
between channels to populate the green (G) channel in
advance, then a local weighted directional interpolation
method is used to refine the green channel. The pre-
interpolated green channel is used to calculate the directional
gradient since it supports more accurate edge information
than conventional methods. These directional gradients in the
working window are used to determine the interpolation
direction. The pre-interpolation result is refined along the
determined interpolation direction. Finally, we apply a post-
processing approach to remove interpolation artifacts by
utilizing the directional weighted mean of neighboring color
differences over channels.

The remainder of the paper is organized as follows. The
proposed method including green channel interpolation and
refinement, red (R) and blue (B) component interpolation,
and overall plane refinements are described in Section Il. We
evaluate the Demosaicking performance of the conventional
and the proposed methods in Section Il1. Finally, conclusions
are made in Section IV.

1. THE PROPOSED METHOD

The green plane is usually reconstructed first because it
contains twice as many samples as the red or blue planes.
Thus, the green plane possesses most of the spatial
information of the image to be interpolated and has great
influence on the perceptual quality of the image.
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Furthermore, once the green plane is fully populated, the
green plane can be used to guide the subsequent red and blue
plane interpolation by making full and direct use of channel
correlation.

A. Green Channel Interpolation

The green channel is interpolated in two steps. In the first
step, we use the color differences xr (=G-R) and xz (=G-B).
The green channel can be roughly interpolated in four
directions: north (N), south (S), west (W), and east (E). The
inter-channel correlation is exploited as the weighted factor
to adjust the contribution of color differences among
neighboring pixels. As illustrated in Fig. 1, the green pixel
value at a location Rs can be obtained by first calculating the
xg Values of the four points surrounding Rs, that is, Gg, Gy,
G, and Gya. The xr values of the four points are calculated
by the following equations, respectively:
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Next, the absolute color gradients of the channels that

measure the spatial correlations of the neighboring pixels G,
Gie, G0, and Gy3 along the four directions are calculated as:
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where X(i, j) is Bayer-patterned CFA at position (i, j),
and (a, b) is the position of the central missing color
component in the local sliding window. DY and D£ are the
absolute color gradients of Gy, and Gz in the horizontal
direction, and DY and D5, are the absolute color gradients of
Gg and G4 in the vertical direction.

The inverse items of absolute color difference are used as
weight factors to adjust for the contribution of each kR value
according to their spectral correlation with the central
missing color component. The weight allocated to each kR is
listed as follows:
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Then, the generalized color difference kgrs Of the central
missing green component and Rs are estimated using the
surrounding xg value and its corresponding weight by the
following equation:
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Finally, the missing green component Ggs is interpolated
at the position of R5 as:

—

Ggps = R + Wps ()

B. Green Channel Refinement

Once the missing green component is populated, it can be
used to determine the interpolation direction in the
refinement step. In the refinement step, every pre-
interpolated color component is refined by combining the
estimates obtained from its four interpolation directions by
exploiting the spectral correlation among the neighboring
pixels along that direction. Utilizing the color difference
between the R and G channels, Ggs can be estimated along
the four directions. Referring to Fig. 1, Ggs is estimated as
GRs, G5, G2%, and GE; in these four directions as:
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For better estimation of Ggrs, We assign each estimate
with an appropriate weight using the pre-interpolated green
channel, and the directional gradients of R5 along the four
directions are calculated by:

A = |Gy — Ggg | + |Gaz — G| + | Gs — G5 |
+|Gye — Gyo| + |Gy — G| + |Gsy — Gua| + ¢
&= |51: - §31u| + |§R5 _Glu‘ + ‘GLE - gau.‘
+‘§5w - Gw| + |Glu _ﬁﬂs| + |ﬁ5“ _G:0| t+e
A" :iGs - Ei&m| + ‘ﬁm _‘Gl.: +J‘515 - ﬁmu‘
+‘GEH.- - Gg‘ + |GJ.3 - GRS‘ + |Gz10 _Glﬂ-| te
45 = |Gu - l§.En| + ‘aﬂs - Giz| + |Gm - §3L1|
+|'§a? - GJ.I}‘ + ‘GJ.B _gﬂﬁ| + gau. _GLF| te

()

349



&

ATLANTIS

Advances in Computer Science Research, (ACSR), volume 52

PRESS

Where, ¢ is a small positive factor to avoid the gradient
being zero. The interpolation direction of Rs is determined
by the directional gradients according to the distribution
situation of the four directional gradients of Rs: AN, AS, AV,
and AE. The final interpolation of Ggs can be classified as
one of three situations.

If a(AW+ AE)< (AN+ AS), the interpolation direction is
determined to be horizontal, and the interpolation is only
applied in the west and east directions.

If a(AN+ AS)< (AW + AF), the interpolation direction is
determined to be vertical, and the interpolation is only
applied in the north and south directions.

Otherwise, the interpolation direction is undefined, and
the interpolation is applied along all four directions. Here,
the coefficient a (0>1) is used as a constraint factor to judge
the interpolation direction.

The inverse of the directional gradients are used as the
weight factors to adjust the joint contribution of estimation
along the four interpolation directions similarly to the pre-
interpolation step. They are represented as:

1
F =7 (8)

The interpolation equations are given according to the
three determined directions. For horizontal interpolation, the
estimations of GY and GE in the horizontal direction are
used, and the weighting factors of n'¥ and nE are involved in
order to adjust the interpolation performance. For horizontal
interpolation, the normalized interpolation equation is given

by:
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Similarly, for wvertical interpolation, the normalized
interpolation equation is defined as:

= gf& " + ﬁg& £n*

Ggps = T (10)

For the case where the interpolation direction is
undefined, the interpolation is estimated along the four
directions in order to avoid interpolation error. In other
words, we use the joint contribution of all the pre-
estimations GRs, G5, Gugs, and GE. in four directions to
guarantee the accuracy of interpolation with the weighting
factors of 0N, n5, W, and nE. The normalized interpolation
equation is defined as:

GES
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By applying the above procedures to all red and blue
positions, we can refine the green plane.

C. Interpolating the Missing Red and Blue Components

From the Bayer CFA samples, the green pixels are
initially interpolated by the proposed method. Since the red,
green, and blue planes are highly correlated, the interpolation
process for R and B uses their color difference planes to
avoid color mis-registration problems. First, the color
difference planes drg and dgg are calculated by Eq. (12).

SRG =R_G_. {?Hﬂ_:B_G (12)

Thus, red and blue pixels can be reconstructed by Eq. (13)

as follows:

R=G+ 8gc, B=G+ 8z (13)

Specifically, the color difference planes are calculated
under two conditions: the missing red and blue components
at green CFA sampling positions and the missing blue (or red)
components at red (or blue) sampling positions. Different
neighboring pixels are used to interpolate the missing red
and blue pixels according to the position condition.

In order to reduce the interpolation artifacts, a refinement
scheme processes the interpolated green samples G first to
enhance the interpolation performance, and based on the
refined green plane, it performs a refinement of the
interpolated red and blue samples. More details on this
refinement scheme can be found in [7, 12].

11 EXPERIMENTAL RESULTS

In this section, the proposed local adaptive directional
interpolation algorithm (LADI) is evaluated both objectively
and subjectively, and compared with various Demosaicking
methods. The first 18 digital color images from the Kodak
image dataset and were used to generate a set of testing
images [15]. To conduct the experiments, we first
implemented the mosaicking procedure using a Bayer color
filter array on the target testing images, and then applied
different Demosaicking methods to reconstruct the whole
three-color-channel  demosaicked image. Finally, we
compared LADI with the DL, LSLCD, EDEP, AFD, and
ESF methods. In addition, a refinement non-embedded LADI
(labeled LADIy) was also listed to determine the
improvement in the embedded refinement method in LADI.
To validate the proposed algorithm we conducted
simulations using MATLAB 2009a on a Intel(R) Core(TM)
i5 CPU M460 @2.53GHZ processor.

Table | shows the color peak signal-to-noise ratio
(CPSNR) for objective comparison. It can be seen from
Table | that our proposed method gave the highest average
CPSNR value, and ESF and DL were the second and the
third best of the compared methods. On the other hand,
LSLCD showed the worst objective quality in the
comparison. It is obvious that after refinement, LADI has a
much higher CPSNR value than LADI.

Table Il shows the objective image quality with the index
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of zipper effect ratio (ZER) [13]. In terms of ZER, the
proposed LADI method gives the best performance with the
least severe zipper effect, followed by ESF, which had the
second least serious zipper effect. Although AFD had the
lowest ZER value in many test images (the third best
performance in average ZER metric), it did not have any
advantage in terms of average ZER due to the lack of
robustness and reliability for all images. In comparison, it
can be intuitively observed that LADI outperformed LADIy
due to the efficiency of the refinement processing.

From the comparisons of the three objective evaluations,
LADI showed competitive performance among all the
methods tested, and its interpolation of various test images
was accurate and robust. It should be noted that all of the
measures in our experiments were computed after removing
a ten-pixel-wide boundary around the border of the image.

For subjective evaluation, we used images #1, #15 from
the Kodak dataset for subjective performance evaluation.
Zoomed-in portions of demosaicked images are presented in
Figs. 2(a) and Figs.3 (a). In Figs. 2, the counterpart images
from the compared Demosaicking methods are shown to
demonstrate artifact abilities blocking along the intensive
edges of the window shades. The demosaicked image from
LADI showed clear edges, just like the original figure. LADI
caused the fewest color artifacts compared to other methods,
as seen in Fig. 2(i). It is noteworthy that even without
refinement, LADIy caused fewer interpolation artifacts than
other methods, which can be seen in Fig. 2(g). A similar
comparison of texture-preserving ability using image #15 is
shown in Figs. 3. In Fig. 3(a), the windows with blinds have
an intensive and texture-like narrow edge. Due to the well-
exploited inter-channel correlation, the edge direction is well
estimated. Thus, even with this narrow, short edge, our
proposed methods LADIy and LADI, can recover the edge
with inconspicuous color artifacts, as shown in Fig. 3(g, h).
The other methods showed more or fewer color artifacts and
suffered distortions in the edge direction to a variable degree,
which can be seen in Figs. 3(b-f).

Figure 1. A 7x7 Bayer CFA block.
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V. CONCLUSIONS

In this paper, we proposed an efficient Demosaicking
algorithm that applies a gradient inverse weighted
interpolation method along the interpolation direction as
determined by the distribution of the directional gradient.
The results showed that our method can determine the
interpolation direction accurately. By using the refinement
method within the same green channel, artifacts can be
avoided. Consequently, our proposed interpolation method
has advantages for preserving smooth edges and details.
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TABLE I. TABLE CPSNR COMPARISON (IN DB) OF DIFFERENT DEMOSAICKING SCHEMES FOR KODAK IMAGE DATASET

Image DL LSLCD | EDEP | AFD ESF LADIy | LADI | Rank
1 38.396 | 39.367 | 38.434 | 37.432 | 39.801 | 37.624 | 39.548 2
2 40.849 | 39.533 | 39.976 | 40.629 | 40.738 | 39.857 | 40.106 4
3 42552 | 40.498 | 42.668 | 42.516 | 42.348 | 42.441 | 42.943 1
4 40.436 | 39.514 | 40.448 | 40.418 | 39.95 | 40.528 | 40.694 1
5 37.966 | 36.788 | 38.058 | 37.903 | 37.418 | 37.274 | 38.468 1
6 40.104 | 40.132 | 39.588 | 37.859 | 41.064 | 38.145 | 40.253 2
7 42316 | 40.814 | 42.268 | 42.823 | 42.083 | 42.568 | 42.651 2
8 35978 | 35.744 | 35.862 | 35.096 | 37.105 | 35.424 | 36.537 2
9 42.972 | 41.335 | 42.677 | 42.615 | 42.886 | 42.127 | 43.115 1
10 42563 | 41.759 | 42.522 | 42.62 | 42.457 | 41.864 | 42.758 1
11 39.934 | 39.602 | 39.712 | 39.163 | 40.554 | 38.379 | 40.057 2
12 43.368 | 42.732 | 43.283 | 42.586 | 43.658 | 42.539 | 43.698 1
13 34.712 | 35.888 | 35.009 | 33.655 | 36.008 | 34.543 | 35.49 4
14 36.781 | 34.364 | 36.204 | 36.923 | 35.844 | 36.784 | 36.538 4
15 39.799 | 39.149 | 39.704 | 39.78 | 39.186 | 39.16 | 39.698 4
16 43.667 | 43.555 | 42.933 | 40.962 | 44.226 | 42.005 | 43.954 2
17 41574 | 41.204 | 41.596 | 41.127 | 41.67 | 40.207 | 41.503 4
18 37.777 | 37.533 | 37.803 | 37.405 | 37.983 | 36.937 | 37.925 2

Avg. | 40.097 | 39.417 | 39.930 | 39.528 | 40.277 | 39.356 | 40.330 1

TABLE I. TABLE ZER COMPARISON OF DIFFERENT DEMOSAICKING SCHEMES FOR THE KODAK IMAGE DATASET

Image DL LSLCD | EDEP | AFD ESF LADIy | LADI Rank
1 1.721 2.178 1.807 1.835 1.351 1.936 1.481 2
2 1.098 2.634 1.288 1.018 1.248 1.097 1.296 6
3 0.605 1.363 0.641 0.594 0.566 0.643 0.527 1
4 0.887 1.267 1.032 0.825 0.924 1.126 0.971 4
5 1.091 1.918 1.088 0.928 1.006 0.98 0.898 1
6 0.942 1.361 1.084 1.244 0.753 1.116 0.919 2
7 0.613 1.799 0.719 0.445 0.598 0.439 0.628 5
8 1.876 2.602 2.298 1.735 1.515 1.748 1.629 2
9 0.852 1.447 1.014 0.749 0.963 1.077 0.903 3
10 0.869 1.45 0.993 0.679 0.888 0.928 0.893 4
11 0.952 1.519 1.045 1.063 0.788 0.979 0.893 2
12 0.774 1.318 0.897 0.955 0.651 1.006 0.758 2
13 1.393 1.439 1.347 1.409 1.239 1.398 1.222 1
14 1.09 1.574 1.135 1.178 0.968 1.215 0.985 2
15 0.738 1.081 0.775 0.670 0.769 0.859 0.688 2
16 0.729 1.064 0.909 1.132 0.563 0.867 0.679 2
17 0.717 0.939 0.752 0.643 0.735 1.074 0.69 2
18 1.188 1.398 1.191 1.064 1.255 1.256 1.135 2
Avg. 1.0075 | 15751 | 1.1119 | 1.0092 | 0.9322 | 1.0969 | 0.9553 1
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@ (h) @ (h
Figure 2. (a) Zoomed-in sub-image of original image #1 and the Figure 3. (a) Zoomed-in sub-image of original image #15 and the
demosaicked images by:(b) DL [5]; (c) LSLCD [6]; (d) EDEP [7]; (e) AFD demosaicked images by:(b) DL [5]; (c) LSLCD [6]; (d) EDEP [7]; () AFD
[81; (f) ESF [9]; (g) LADIy and (h) LADI. [8]; (f) ESF [9]; (g) LADIy and (h) LADI.
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