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Abstract. Minimum Variance Distortionless Response(MVDR) algorithm for wideband coherent 

signals based on data reconstruction is proposed.Based on the sampling theorem, the output of 

different array elements at the same time is taken as the sampling of the continuous line array, and 

the data of the time domain is re-sampled. The method is used to estimate the azimuth of the 

broadband coherent source and a method of obtaining the focus error is proposed to analyze the 

performance of the MVDR algorithm of the wideband coherent source. Computer simulation of the 

FFT interpolation method and data reconstruction method of the azimuth estimation results show 

that for the broadband MVDR algorithm, data reconstruction method than the FFT interpolation 

method has better resolution probability and lower RMS error. 

Introduction 

Broadband signal processing in the sonar, radar, array microphones and other fields has a wide 

range of applications. The common methods of broadband signal processing include non-coherent 

signal subspace method [1] (ISM) and coherent signal subspace method [2] (CSM). The ISM 

method is computationally large and can not handle coherent signals. By focusing, the observations 

at different frequencies are aligned on the subspace of a certain frequency to obtain the observations 

of the focussed synthesis and the azimuth estimation is carried out on this basis. Because the CSM 

method needs to estimate the DOA and its performance is influenced by the estimated azimuth, the 

spatial interpolation method [3, 4, 5] is proposed to avoid the azimuth prediction problem. 

Subspace-based high-resolution algorithms [6,7] for azimuth estimation usually need to estimate the 

number of sources. 

In this paper, the time-domain data reconstruction method is introduced into the space-domain 

data, and the narrow-band MVDR algorithm is used to estimate the azimuth of the broadband 

coherent sources. The practical steps of the MVDR algorithm are given. The simulation results 

show that the data reconstruction method has more superior azimuth estimation performance than 

the FFT interpolation method for wideband MVDR algorithm. 

Broadband Signal Model 

An array of M elements is arranged to receive P wideband stationary random signals located at 

the far field. When there is additive noise, the signal received by the mth element can be expressed 

as: 
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Where 1,2 ,m M , 1,2 ,p P ,  p ts  is the pth source,  m tn  is additive noise on the mth element, pθ  

is the azimuth of the pth signal, and in the uniform line array,    ( 1) sin /m p pm d c    , denotes the 

propagation delay of the pth signal (relative to the reference point) received by the mth element, and 

d is the spacing of the elements. 

 In the frequency domain, eq.(1) can be expressed as: 

       ,j j j j     X A S N                                                                (2) 

where 
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where  m jX 、  m jS  and  m jN  is frequency domain form of observation vector  m tx 、signal 

vector  p ts  and noise vector  m tn  at the frequency j  respectively，  ,j pθa  is direction vector，
T  denotes indicates transpose， 1,2 ,m M ， 1,2 ,p P ， 1,2,j J ，J  is the number of frequency points 

to be processed. 

Data reconstruction method 

Since the signal subspace of a wideband signal is a function of frequency and signal source 

orientation, the signal subspaces of different frequencies are different from each other. In order to 

align the signal sub-spaces of each sub-band, it is necessary to linearly transform the array output so 

that the direction matrix at different frequencies within the bandwidth range is kept constant. Then 

the element spacing d should be a function of frequency, set the focus frequency 0f , should be: 

0( )j jd f f df                                                         (3) 

In order to obtain the output of the virtual array which is different from the actual array element 

spacing, the real array must be interpolated. 

For uniform line arrays, interpolation can be performed using the sampling theorem. As can be 

seen from the sampling theorem, if the continuous-time signal  ts  is of limited bandwidth ( m  ), 

the continuous signal can be completely determined by the sampling value  snTs  at its discrete 

interval (sampling interval sT  satisfies the sampling theorem). We can reconstruct  ts  by 

generating a periodic impulse string whose impulse amplitude is the successive samples and then 

passing the impulse train through a low-pass filter with a cut-off frequency c  (which satisfies 

cm s m      ) The output of the filter is  s t . 

Its reconstruction formula is: 
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The formula is applied to the array element output of the uniform line array, that is, the output of 

each array element at the same time is regarded as sampling to the continuous linear array. At this 

time, the sampling value  snTs  and sampling interval sT  to meet sT d , corresponds to the output of 

each array element. 

As long as the spatial sampling theorem is satisfied, that is, min/ 0.5d    ( min  is the wavelength 

corresponding to the highest frequency of the signal), the output of any point on the continuous 

linear array can be recovered from the output of each element at that moment. 

In the actual situation, can not satisfy  ,n   , adopt the following method to realize spatial 

data reconfiguration: 

1) The subband data matrix BX  at each frequency point is obtained by subband decomposition 

of the received array data. 

2) The minimum frequency lf  of the selected signal is taken as the focusing frequency. To make 

each subband data converge to the same frequency lf , BX  is reconstructed after the data matrix 

B1X  sampling interval: 
' / ( ) / ( )s s l lT T f f j d f f j                                                                            (5) 

where  f j  is the signal frequency corresponding to the jth frequency point, 1,2,j J , J is the 

number of frequency points to be processed, so the data length of B1X  is: 

     ' '1 / 1 /s lM M d T M f j f                                                                       (6) 
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3) After reconstructing the spatial data,we get: 
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where  
T

1 1,1, 1M E1 ，  1 1,1, 1N E2 ， N  is length of vector T ，  
T

0, , , 1d M d    0T ， ' '0, , , 's sT M T   T ，

denotes transpose； c satisfy cm s m      ，and 2 /s d  . 

4) The matrix of M rows in B1X  is selected as the interpolated matrix, and then the covariance 

matrix R is calculated. 

5) The covariance matrix corresponding to J frequency points is obtained according to the above 

steps, then the mean value Rx  is obtained. Then the MVDR algorithm is used to estimate the DOA 

and the spatial azimuth spectrum of the target is obtained. 
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                                                                    (8) 

where  enote inversion operations and conjugate transpose, respectively，  0 ,a f θ  

represents the direction vector at the focus frequency. 

Focusing error 

Focusing error is the main factor to determine the performance of the MVDR algorithm. For the 

conventional wide-band focusing method, the principle of focusing error is given in. However, 

since the spatial resampling method does not need to solve the focusing matrix, The focus error is 

obtained by the previous method. Therefore, a new principle of focusing error is proposed. 

0

1
j X Xj FM

  F F                                                                              (9) 

Where, M is the number of elements, 0XF  and XjF  are the matrix of 1M  , 0XF  represents the 

frequency domain data under the focus frequency, XjF  represents the frequency domain data after 

the decoherence processing at frequency jf , 1,2, ,j J , J is the number of frequency points to be 

processed, and  the Frobenious norm. 

Test results 

Simulation environment: Consider a uniform line array composed of 16 array elements, with the 

element spacing being half of the wavelength corresponding to the highest frequency of the signal. 

The noise is the uncorrelated spatial white noise, the center frequency of the two coherent incident 

signals is 0 800Hzf  , the relative bandwidth is 50%, the second signal is the first signal delay 0.05s, 

the angle of incidence is 2  , 4 ,sampling frequency 010sf f . 

The FFT focusing error jε of the data interpolation method [5] and the data reconstruction 

method at different frequencies are shown in Fig.1. Obviously, the error of FFT interpolation is 

larger than that of data reconstruction, which is the fundamental reason why the performance of 

MVDR is not as good as that of data reconstruction using FFT interpolation.Figure 2 shows the FFT 

interpolation method and data reconstruction method in different signal to noise ratio resolution 

probability. It can be seen that with the improvement of signal-to-noise ratio, the resolution 

probability of the two methods becomes 1, and the resolution probability of the data reconstruction 

method is better than that of the FFT method when the SNR is less than 10dB.Figure 3 and Figure 4, 

respectively, compared under different conditions of signal to noise ratio, using data reconstruction 

methods and FFT interpolation method and the azimuth angle of the root mean square error.It can 

be seen from Fig.3 and Fig.4 that the RMS error of the azimuth obtained by the data reconstruction 

method is less than that of the FFT interpolation method at different SNRs. Therefore, for the 

broadband MVDR algorithm, the data reconstruction method has better azimuth estimation 

performance than the FFT interpolation method. 
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Conclusion 

In this paper, the time domain data reconstruction method is introduced into the space array data, 

and the practical steps of the data reconstruction method are given. A focus error suitable for spatial 

resampling decoherence method is proposed. The results show that the performance of the data 

reconstruction method is better than that of the FFT method for the wideband MVDR algorithm, 

which is compared with the FFT interpolation method and the data reconstruction method by 

computer simulation. 

         

   Fig.1. Frequency with the SNR curve                 Fig.2. Resolution probability with SNR curve 

        

  Fig.3. 2 Azimuth mean square error curve            Fig.4. 4 Azimuth mean square error curve 
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