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Abstract. Grey wolf optimizer (GWO) is a relatively novel stochastic optimization technique which 
has bee shown to be competitive to other methods. However, the control parameter a of GWO is 
decreased from 2 to 0 over the course of iterations. Inspired by particle swarm optimization (PSO), a 
novel nonlinear adjustment strategy of control parameter a  is designed to enhance the performance of 
GWO algorithm. In addition, to enhance the global convergence of GWO algorithm, when generating 
the initial population, opposition-based learning strategy is employed. Simulation results show that the 
proposed algorithm is able to provide very competitive results compared to other algorithms. 

Introduction 
Grey wolf optimizer (GWO) is a population-based optimization technique developed by Mirjalili et al. 
[1], which mimics the social leadership hierarchy and hunting behavior of grey wolf in nature. GWO 
algorithm has few parameters and easy to implement, which make it superior than gravitational search 
algorithm (GSA), particle swarm optimization (PSO), and fast evolutionary programming [1]. As a 
result, GWO has caused much attention and has been used to deal with a number of practical 
optimization problems, such as optimal control of DC motor [2], optimal power flow [3], economic 
load dispatch problem [4], optimal reactive power dispatch problem [5], two-stage assembly flow shop 
scheduling problem [6], unit commitment problem [7], feature selection [8], and so on. 

However, like other stochastic population-based algorithms, such as genetic algorithm (GA) and 
PSO, as the growth of the search space dimension, GWO also faces up to some problems. For instance, 
GWO algorithm is easily trapped in the local optimal value and provides a poor conver- gence behavior 
at exploitation. Therefore, researchers increasingly are paying close attention to the improvement of 
GWO for overcoming these disadvantages. Zhang and Zhou [9] present an extended GWO algorithm 
based on Powell local optimization method for global optimization and clustering analysis. Zhu et al. 
[10] presents a hybrid GWO (HGWO) algorithm with differential evolution (DE) to accelerate the 
convergence speed of GWO and improve its performance. Saremi et al. [11] propose the use of 
evolutionary population dynamics (EPD) in the grey wolf optimizer. 

In the GWO algorithm, exploration and exploitation are guaranteed by the adaptive values of 
control parameter a . However, the control parameter a is linearly decreased from 2 to 0 over the 
course of iterations. Inspired by PSO, this paper designed a nonlinear adjustment strategy of control 
parameter a in the GWO algorithm. In addition, the opposition-based learning strategy is introduced to 
initialize the population. The experimental results show that the proposed algorithm not only has higher 
convergence speed but also can find out the optimal solution compared to the other algorithms. 

Grey Wolf Optimizer Algorithm 
In 2014, Mirjalili et al. [1] developed a novel population-based optimization technique, GWO, which 
mimics the social leadership and hunting behavior of grey wolves in nature. Similarly to other 
population-based algorithms, GWO initials the search process by a population of randomly generated 
candidate solutions. To formulate the social hierarchy of wolves when designing GWO, the current 
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three best candidate solutions are called α, β, and δ respectively. The rest of the candidate solutions are 
named as ω and required to encircle α, β, and δ to find better solutions. The encircle process could be 
formulated as follows [1]: 

|)()(|)()1( tXtXCAtXtX pp −⋅⋅−=+                                                                                                            (1) 

Where t  is the current iteration, araA −⋅= 12 , 22 rC ⋅= , Xp is the position vector of the prey, X is the 
position vector of a grey wolf, 1r  and 2r are random vectors in [0,1], respectively, a is linearly 
decreased from 2 to 0 over the course of iterations. 

It should be noted that ω is required to update its position with respect to α, β, and δ simultaneously 
as follows [1]: 
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where Xα is the position of α, Xβ is the position of β, Xδ is the position of δ, A1, A2, A3 and C1, C2, C3 are 
all random vectors. 

Improved Grey Wolf Optimizer Algorithm 

Initial Population by Opposition-based Learning Strategy 
Population initialization is a crucial task in GWO because it can affect the quality of the final solution 
and the convergence speed [12]. If no information about the solution is available, then random 
initialization is the most commonly used method to generate candidate solutions (initial population), 
which often makes candidate solutions concentrated in a local area. According to [13], replacing the 
random initialization with the opposition-based learning population initialization can get better initial 
candidate solutions and then accelerate convergence speed. 

Therefore, this papaer employs opposition-based learning strategy to generate initial population 
which can be used instead of a pure random initialization. The pseudo code of the opposition-based 
learning initialization is presented in Algorithm 1. 

Algorithm 1 Opposition-based learning initialization 
Set the population size N . 
Random initialization {X(N)} 
For 1=i to N do 

For 1=j to D do 
)()1,0( min,max,min,, jjjji xxrandxx −⋅+=  

End for 
End for 
Opposition-based learning initialization {OX(N)} 
For 1=i to N do 

For 1=j to D do 

jijjji xxxox ,max,min,, −+=  

End for 
End for 
Choose N best solutions from X(N) and OX(N) as initialization population. 

Nonlinear Adjustment Strategy of Control Parameter 
As we know, population-based stochastic optimization algorithms must have a good balance between 
exploration and exploitation. In the standard GWO algorithm, exploration and exploitation are 
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guaranteed by the adaptive values of control parameter a . However, the values of control parameter 
a are linearly decreased from 2 to 0 over the course of iterations. To bring about a balance between the 
exploration and exploitation characteristics of GWO, inspired by PSO algorithm, we design a novel 
nonlinearly adjustment strategy of control parameter a as follows: 
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where t  is the current number of iterations, itermax_ is the maximum number of iterations, ainitial is the 
initial value of control parameter a , and λ is the nonlinear modulation index. According to equation (4), 
the values of control parameter a are nonlinearly varying over the course of iterations. 

The Proposed Algorithm 
Based on the above explanation, the pseudo code of the proposed algorithm (denoted as IGWO) is 
demonstrated in Algorithm 2. 

Algorithm 2 The proposed IGWO algorithm 
Initialize the algorithm parameters: population size N , maximum number of iterations ( itermax_ ), control parameter 
a , A , and C 
Set 0=t  
Initialize the grey population Xi ( i =1,2,..., N ) by opposition-based learning strategy 
Calculate the fitness values of each individual 
Xα = the best individual 
Xβ = the second best individual 
Xδ = the third best individual 
While ( itert max_< ) 

For each individual 
Update the position of the current individual by equations (2) and (3) 

End for 
Update control parameter a by equation (4), then update parameter A and C 
Calculate the fitness vlaues of all individuals 
Update Xα, Xβ, and Xδ 

1+= tt  
End while 
Return Xα 

Simulation Experiment and Comparison 
In order to validate the performance of the proposed IGWO algorithm, we use 6 benchmark test 
functions [1] compared with the other population-based algorithms. These benchmark test functions 
are listed in Table 1 where Name indicates name of the function, Function is the equation of the 
function, fmin is the global optimum, and Range is the boundary of the functions search space. 

Table 1.  Benchmark test functions 
Name Function Range fmin 
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The set of experiments tested on 6 unconstrained optimization functions are executed to compare 
the performance of IGWO algorithm with that of GWO algorithm and HGWO [10] algorithm. For a 
fair comparison among three algorithms, they are tested using the same setting of the parameters, that 
is, and the population size is set 30, the maximum number of iterations is set to 500, and the dimension 
is set to 30 for all test functions. All results reported are obtained based on 30 independent runs. We 
adopted the best, the mean, the worst, the standard deviation of fitness as the criterion of experimental 
validation. The statistical results are reported in Table 2. Meantime, for the sake of reliability, the 
results of HGWO algorithm reported in [10] are used in Table 2 directly. For clarity, the results of the 
best algorithms are marked in boldface. 

Table 2.  Experimental results comparison of IGWO, GWO and HGWO on 6 test functions 
Function Algorithm Best values Mean values Worst values St.dev 

f1 GWO 3.15E-029 3.58E-027 9.87E-027 2.93E-027 
 HGWO 2.92E-034 1.12E-032 8.95E-032 2.32E-032 
 IGWO 2.21E-052 1.05E-050 2.35E-049 7.41E-050 

f2 GWO 3.12E-017 1.10E-016 2.52E-016 5.53E-017 
 HGWO 1.65E-020 9.33E-020 3.60E-019 6.92E-020 
 IGWO 8.50E-031 7.83E-030 3.49E-029 1.03E-029 

f3 GWO 5.18E-008 7.17E-007 3.11E-006 8.71E-007 
 HGWO 5.81E-009 4.17E-008 2.39E-007 4.56E-008 
 IGWO 3.98E-015 1.32E-013 7.16E-013 2.41E-013 

f4 GWO 5.68E-014 4.7798 18.8698 6.3709 

 HGWO 0 2.27E-001 4.7666 9.20E-001 
 IGWO 0 0 0 0 

f5 GWO 7.90E-014 1.00E-013 1.15E-013 2.02E-014 
 HGWO 3.64E-014 4.27E-014 5.06E-014 4.37E-015 
 IGWO 7.99E-015 1.15E-014 1.51E-014 2.99E-015 

f6 GWO 0 2.21E-003 4.36E-002 6.99E-003 
 HGWO 0 1.37E-003 3.12E-002 5.82E-002 
 IGWO 0 0 0 0 

As can be seen from Table 2, compare with GWO algorithm, IGWO can find better results on 5 test 
problems (f1, f2, f3, f4, and f5). For function f6, two algorithms obtained similar “best” values. However, 
IGWO found better “mean”, “worst”, and “st.dev” values. With respect to HGWO algorithm, IGWO is 
able to obtain better results on 4 test problems (f1, f2, f3, and f5). For test functions f4 and f6, HGWO and 
IGWO found similar “best” results. In contrast, IGWO found better “mean”, “worst”, and “st.dev” 
results. The above experimental results reveal that IGWO has the increasing advantage over the other 
compared algorithms for complex high-dimensional global optimization problems. 

Figure 1 illustrates the convergence curves of fitness values with respect to the number of iterations 
for the 6 test functions with d=30. It can be observed from Figure 1 that the proposed IGWO algorithm 
is faster than GWO algorithm on all the test functions. 
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Figure 1  Convergence curve of IGWO and GWO for 6 test functions. 

Conclusions 
Grey wolf optimizer algorithm has been recently proposed as a novel population-based method 
inspired by the social leadership hierarchy and hunting behavior of grey wolves in nature, and it is has 
so far been successfully applied in a variety of fields. This paper proposed an improved GWO (IGWO) 
algorithm for global optimization problems. 6 benchmark test functions were employed in order to 
verify the performance of the proposed IGWO algorithm. The results show that the proposed IGWO 
was able to provide highly competitive results compared to standard GWO algorithm and HGWO 
algorithm. 
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