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Abstract. As a common problem of multi-core parallel programs, the problem of data race has been 
paid more and more attention in recent years. In this paper, a dynamic detection approach for data 
race problem detection is proposed. By introducing a new metadata storage based on the buddy 
memory allocator, the metadata access performance is improved significantly. A specific 
implementation of the approach based on LLVM compiler infrastructure is made. The experimental 
results show that the proposed approach can reduce the time cost of dynamic race detection and 
achieve 2x-5x performance on the Olden benchmark. 

1. Introduction 

Since the invention of multi-core processors, personal computers, laptops, mobile phones and 
other terminals have the ability of multi-core processing. The extensive application of multithreaded 
programs brings data race problems, which is a situation that two or more threads simultaneously 
access the same memory object, with at least one write operation. Data race detection is divided into 
two kinds, the static analysis approach and the dynamic analysis approach. Due to the undecidability 
of static analysis, accurate static analysis approach of data race problems is proved to be an NP-hard 
problem [1], and practical static analysis is usually an incomplete approximation algorithm. Common 
dynamic analysis approaches of data race detection have the overhead of 10x-30x, their high cost 
seriously compromise the practicality. 

In order to reduce the cost of dynamic data race detection and balance the efficiency and scale, 
this paper proposes an efficient data race dynamic detection scheme. By storing the metadata of the 
corresponding memory object in the tail of the memory object, the detection algorithm can quickly 
detect whether the memory access exists data race problem. We implemented the new method using 
LLVM compiler infrastructure [13] and the SAFECode compiler [9].  

The rest of this paper is organized as follows. Section 2 provides background on buddy memory 
allocator. Section 2 presents the design of our approach, and Section 3 describes our implementation 
within the LLVM compiler. Section 4 describes our performance evaluation of our approach, Section 
6 discusses related work, and 7 concludes with a discussion on future work.  

2. Metadata model 

Metadata and memory objects are one-to-one correspondence. The authors of [5] [6] [12] note that 
the metadata access overhead is the main overhead in race detection algorithms. Jones et al [4] use 
the linked list as the data structure of metadata, with retrieving the complexity O (n) theoretically, 
however, the time overhead is only 80x. Dhurjati et al [5] [6] use the splay tree as the data structure 
of metadata, with the retrieving complexity O (log2n), the actual time overhead of 20x. Thread 
Sanitizer [10] [12] maps the whole memory space, and a continuous block of memory is reserved as 
a linear table, with the O (1) access complexity. However, this method does not use the data locality 
optimization, the practical time cost is 8x-15x. In order to improve the retrieval performance of 
metadata, we design a new metadata memory model based on buddy memory allocator. Our memory 
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model takes full advantage of the computer system for the spatial consistency of data optimization, 
experimental results show that the new memory model will reduce the time cost to only 2x-5x. 
2.1 Memory Model 

In order to improve the performance of data race detection, we use the buddy memory allocator, 
all memory objects aligned to the power of 2. For example, for x = malloc (200), we will transform 
the program to allocate a 256-byte memory space. We follow the same assignment for global variables 
and stack space. Because of the alignment and padding, we can use only one byte to store the 
allocation space of a memory object. 

e = log2 (Size)                                                                                                                               (1) 
In this paper, we use an contiguous array to store the encoded size of the allocated space, because 

each record occupies only one byte of space, the cost of the adjacency array is 1/ SlotSize. For a given 
address p, we can query on the contiguous array to obtain the binary logarithm of the memory object 
length. 

e = SizeTable [ p>> SlotSize]                                                                                                        (2) 
We need to store the corresponding metadata to achieve dynamic data race analysis. Due to the 

ubiquity of data locality, common computer systems provide optimizations for nearby data access. 
The EventList will be stored in the memory cell after the fill area, with the memory space layout 
shown in Fig. 1. 

 
Fig. 1 Memory layout 

After retrieving e, we can quickly determine the starting address of the memory object and the 
starting address of the metadata as well as the allocation size. 

Size = 1 <<e                                                                                                                                   (3) 
base = p& ~ (size - 1)                                                                                                                     (4) 
MetaData = *(base + (1 <<e) – sizeof(MetaData)                                                                         (5) 

2.2 Metadata design for data race detection 
We define the following data structures to represent events for multithreaded memory accesses. 
Tid: A unique identifier for a thread in the running program. 
AccessType: A data structure that records whether or not an access is a write access. 
TimeStamp: A timestamp identifying the access time. 
Event: It records the data access event of a memory structure, which is a triple with form {Tid, 

AccessType, TimeStamp}. 
EventList: [Event1, Event2, ...] records the data structure of a recent memory access array event 

for a memory object. 
IsLocked: It records whether a memory object is locked or not.  
MetaDataObject: <EventList, IsLocked> records the metadata of a memory object. 
Object: For each memory object, a corresponding metadata is attached to record the multi-threaded 

memory access trace. It is a triple with form <MemoryObject, MetaDataObject>. 

3. Race detection algorithm 

3.1 Access sanity check 
The access sanity check algorithm is used to check the legitimacy of an access event and to record 

the information in the metadata area for subsequent checks. The access checking algorithm accepts 
the Tid, TimeStamp, and AccessType of the current access, and compares the access information with 
the metadata of the memory unit. If there is data race, the program is interrupted and the user is 
alarmed. If the data race does not exist then the follow-up procedures normally. 
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Algorithm 3 is the pseudocode for address sanity check. 
Algorithm 3. Access sanity check algorithm 
Algorithm sanity_check (*p, Tid, Timestamp, AccessType) 
01  size = 1 << table [p >> SlotSize]; 
02  base = p & ~ (size – 1); 
03  last_access = rc_table [base >> SlotSize]; 
04  epoch = last_access. epoch; 
05  thread_id = last_access. thread_id; 
06  isWrite = last_access. isWrite; 
07  If current. epoch >> epoch||thread-id == current. thread-id { 
08  rc_table[base>>SlotSize] = current; 
09 return; 
10  } 
11  If (current. isWrite == false && isWrite == false) { 
12  rc_table[base>>SlotSize] = current; 
13  return; 
14  } 
15  EmitWarning (); 

 
3.2 Memory Access 

For a memory access event, we need to determine the legitimacy of its access, that is, whether it 
will cause data race, and stores the visit information in the corresponding metadata area. 

We perform algorithm 4 for any read operation. 
 

Algorithm 4. read operation 
Algorithm load (*p, Tid, Timestamp, READ): 
01  RDPD_check (*p, Tid, Timestamp, READ) 
02  return load (*p) 

 
We perform algorithm 5 for any write operation. 
 

Algorithm 5. write operation 
Algorithm Store (*p, value, Tid, Timestamp, WRITE): 
01  RDPD_check (*p, Tid, Timestamp, WRITE): 
02  return store (*p, value) 

4. Implementation 

In this section, we implemented our approach on the Linux 3.6 64-bit operating system and LLVM 
compiler framework [14]. We select 16 bytes as SlotSize. As multi-threaded data race exists only in 
the user space memory, in order to save costs, we only check user space memory accesses. For 64-
bit Linux operating system, the user space memory address is from 0x0000000 00000000 to 
0x00007FFF FFFFFFFF. Thus, the length of SizeTable is 1 << 43, calculated by Size >> log 
(SlotSize). We uses the mmap() system call provided in posix standard [2] to allocate the space for 
the SizeTable. The overall system architecture is shown in Fig. 2. 
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Fig. 2 System Architecture 

5. Performance Evaluation 

We used an Intel E5-2620v2, 16GB RAM machine as the experimental environment, which is 
running the Ubuntu 16.04 amd64 server operating system, we run the Olden benchmark [13], and 
compared our scheme with FastTrack, Fig. 3 is the benchmark result. 

 
Fig. 3 Benchmark result 

Fig.3 depicts that our approach has a 2x – 5x overhead, outperforms the FastTrack approach. 

6. Summary 

This paper studies the dynamic detection of multi-thread data race, and introduces a novel dynamic 
race detection scheme. The scheme improves the access performance of the memory object metadata 
by using the memory allocation method based on the buddy memory allocator. The experimental 
results show that the proposed scheme is practical and effective. The future work is to further improve 
the efficiency of the algorithm, extend it to more general multi-thread data dynamic detection, and 
combine the race detection with other memory access problem detection. 
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