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Abstract—Energy disaggregation is the task of estimating power 
consumption of each individual appliance from the whole-house 
electric signals. In this paper, we study this task based on deep 
learning methods which have achieved a lot of success in various 
domains recently. We introduce the feature extraction method 
that uses multiple parallel convolutional layers of varying filter 
sizes and present an LSTM (Long Short Term Memory) based 
recurrent network model as well as an auto-encoder model for 
energy disaggregation. Then we evaluate the proposed methods 
using the largest dataset available. And experimental results 
show the superiority of our feature extraction method and the 
LSTM based model.  

Keywords-energy disaggregation; neural networks; deep 
learning;NILM 

I.  INTRODUCTION 

With the development of economy, every day we consume 
more and more electricity, most of which comes from fossil 
fuels. Energy saving and emission reduction are important 
topics in all countries, not only because fossil fuel reserves are 
finite, the consumption of them also causes environmental 
pollution. Energy disaggregation (also known as non-intrusive 
load monitoring, or NILM for short) is the task of estimating 
the power demand of each individual appliance given aggregate 
power demand signal recorded by a single electric meter which 
monitors multiple appliances. Disaggregated electricity 
consumptions can be used to produce itemized electricity bills 
to help customers to identify and improve their consumption 
behavior. Moreover, energy disaggregation can help operators 
to better manage power grid, and detect faulty or improperly 
used devices [1]. 

The research on energy disaggregation dates back to 1980s. 
The seminal work of Hart [2-3] considers each appliance as a 
finite state machine and extracts transients between steady 
states from real and reactive power signals. Note that Hart’s 
method focuses on detecting electrical events rather than 
separating power signal of individual appliance. Subsequent 
approaches focusing on event detection usually incorporate 
more features from harmonics and sometimes use information 
of very high frequency harmonics. Recently, 160 teams joined 
in the Belkin Energy Disaggregation Competition [4] held on 
the Kaggle platform which requires participants to predict the 
status of each appliance at each time point.  

As for methods that directly estimate power demand of 
each device from aggregate power signals, a series of Factorial 
Hidden Markov Model (FHMM) [5] based approaches have 

been studied. Kim et al. [6] compared the effectiveness of 
several unsupervised disaggregation methods on low frequency 
power measurements and proposed a model based on FHMM 
variant which can integrate additional features related to when 
and how appliances are used in the house. Kolter and Jaakkola 
[7] developed a convex programming based approximate 
algorithm to additive FHMM and achieved state-of-the-art 
performance. Supervised machine learning methods have also 
been introduced into the energy disaggregation domain. Kolter 
et al. [8] formulated the objective of maximizing 
disaggregation performance as a structured prediction problem 
and developed an effective algorithm to learn sparse 
representations of electrical signals discriminatively. Elhamifar 
and Sastry [9] defined dissimilarities between energy snippets 
of each device and used them in a subset selection scheme to 
find powerlets (representative power snippets), and then 
formulated the disaggregation problem as an optimization over 
the learned powerlet dictionary under various constraints of 
device usage patterns. In addition, from a broader perspective, 
energy disaggregation can be regarded as a single-channel 
source separation problem [10].  

Currently, deep learning [11] receives more and more 
attention and has made significant improvements in a lot of 
fields such as computer vision, speech recognition and natural 
language processing. So researchers now start to adapt deep 
neural networks to energy disaggregation task. Kelly and 
Knottenbelt [1] applied three types of deep neural network 
structures, a recurrent neural network using Long Short Term 
Memory units (LSTM) [12], a denoising auto-encoder, and a 
regression model that predicts the start time, end time and 
average power demand of each appliance. However, they did 
not achieve state-of-the-art disaggregation performance with 
deep learning approaches. Nascimento [13] also experimented 
and analyzed various deep learning methods to improve the 
performance of NILM.  

In this paper, we conduct empirical investigation of deep 
learning methods in energy disaggregation (NILM). We 
adapted two types of neural network architectures to NILM. 
The first can be viewed as regression problem which estimates 
the transient power demand of a single appliance given the 
whole series of the aggregate power. It can also be considered 
as a non-symmetric auto-encoder. The second type of network 
is a multi-layer RNN (recurrent neural network) using LSTM 
units, which is similar to the structure used in [1]. For both 
structures, we use multiple parallel convolutions with different 
filter sizes to transform the raw power signals. We borrow this 
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idea from GoogleLeNet in image processing [14] and research 
papers in natural language processing [15].  

The rest of this paper is organized as follows. In Section 2, 
we introduce the formulation of NILM. After that, we detail 
our methods in Section 3. Then we provide experiments and 
evaluation results in Section 4. Finally, we conclude our work 
in Section 5.  

II. ENERGY DISAGGREGATION 

In this section we describe a simple formulation of energy 
disaggregation. The purpose of energy disaggregation is to 
separate the power demand of each individual appliance from 
the whole electric consumption signal. Assuming there are 
N different appliance in the building, let ( )i

ty denote the power 

signal of appliance i at time t , where {1,2,..., }t T and T is 
the length of the power series. So the aggregate signal recorded 
by a single smart meter can be represented as the mixture of 
signals of each device:  

( )

1

N
i

t t
i

x y


   .                                   (1) 

So given the aggregate power consumption 1{ }T
t tx  , we need 

to estimate the power consumption ( )
1{ }i T

t ty  of each appliance i , 
where 1,2,...,i N . 

In practice, the value of T  varies for different type of 
devices, since each type of device has its own usage patterns. 
Similar to [1], we refer to the power over a complete cycle of 
an appliance as an appliance activation. For a short-duration 
appliance, for example a kettle, an activation usually lasts for 
several minutes, while for long-duration device such as 
washing machine, an activation may be as long as several hours. 
And in this paper, for every device we set T to be large enough 
to capture the majority of activations of that device. Figure I 
presents example activations of a kettle and a washing machine. 

III. DEEP LEARNING BASED ENERGY DISAGGREGATION 

In this section we first introduce deep learning and discuss 
the feature transform method which uses multiple parallel 
convolutional operations with different filter sizes. And then 
we present two different deep neural network architectures for 
energy disaggregation. 

Deep learning and deep neural networks (DNN) have 
achieved a series of success in a number of domains such as 
computer vision, speech recognition and machine translation. 
In theory, deep neural networks have the ability to learn 
complex nonlinear relationship between input patterns and the 
target to predict. While in practice, they are quite flexible and 
enable building end-to-end solutions in a lot of tasks. So we 
attempt to apply deep neural networks in NILM to estimate the 
per device signals from the overall power signal.  

Usually, a deep neural network can be considered as a 
directed acyclic graph (DAG), where each node represent a 
type of computation or transform, and edges correspond to data 

 

 
FIGURE I.  ACTIVATIONS OF TWO DIFFERENT APPLIANCES. TOP: 

KETTLE, BOTTOM: WASHING MACHINE  

flow between nodes. In general, a node in the DAG is modeled 
using a layer. So far, a variety of layers have been proposed, for 
example dense layer, convolutional layer, dropout layer, batch 
normalization layer and all kinds of activation layers, etc. So by 
combining these layers we have the flexibility to construct a 
wide variety of networks for different tasks. And in this paper, 
we present two types of network for energy disaggregation - a 
multi-layer feed forward network with convolutional layers and 
an LSTM based recurrent network. Generally DNNs are 
optimized using the back propagation algorithm, which 
originates from the chain rule of composite function derivation. 
And in the backpropagation approach, training data flow from 
input layer(s) to output layer(s) in the forward pass while error 
information flows in the opposite direction in the backward 
pass.  

The CNN network used in this paper consists of multiple 
convolutional layers and dense layers. Formally, the CNN 
network can be viewed as a mapping from the input aggregate 
power signal series 1{ }T

t tx   to the power consumption ( )
1{ }i T

t ty   
of a specific appliance. An autoencoder (AE) is a network 
which tries to reconstruct the input. It first encodes its input 
into a compact representation, and then decodes to restore the 
input.  Since energy disaggregation can be viewed as the 
process to reconstruct the clean power signal of each specific 
device from the corrupted power signal with noise from other 
devices, the CNN network can also be considered as a 
denoising autoencoder.  

The detailed architecture of the CNN network is as follows: 

1. Input (length T is appliance specific window size) 
2. Parallel 1D convolution with filter size 3, 5, and 7 

respectively, stride=1, number of filters=32, 
activation type=linear, border mode=same 
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3. Merge layer which concatenates the output of 
parallel 1D convolutions 

4. Dense layer, output_dim=128, activation 
type=ReLU 

5. Dense layer, output_dim=128, activation 
type=ReLU 

6. Dense layer, output_dim=T , activation type=linear 
Convolutional layers are typically used in the first layers of 

a deep neural network structure. And using a small number of 
filters with local receptive field, they have the ability to detect 
various features from the input data. Taking CNN for image 
recognition as an example, the lower layer convolutional filters 
identify features such as edges, corners and patches while 
higher convolutional layers detect even more abstract features 
like trees in a scene, nose in a human face, etc. CNN are also 
frequently used in 1 dimensional signal processing such as 
audio and Electroencephalography signals [11]. So in this 
paper we use CNN layers to extract representative features 
from power series.  

In the above network architecture we employ multiple 
parallel convolutional layers with varying filter size to detect 
features from raw power signal. We borrow this idea from the 
GoogleLeNet [14] model for image recognition, which 
concatenates features extracted by 1x1, 3x3, 5x5 2D 
convolutions followed by different types of pooling.  In 
contrast to the normal approaches which connect layers in a 
cascade manner, this introduces parallel structures into the 
network. And in this way we can learn richer features from the 
raw power in our task. This approach is also widely used in 
natural language processing where 1D convolution with 
different filter sizes are applied to sentences [14].  

Compared to the feedforward network, one advantage of 
recurrent neural network (RNN) is the ability to remember the 
dynamics of previous inputs in its memory. And this makes 
them especially suitable for processing time series data like the 
power consumption data in our task. However, simple RNN 
suffers from the vanishing and exploding gradient problem in 
its training using back propagation through time [11], and this 
limits its ability in processing long term dependencies. In order 
to solve this problem, the gated recurrent unit called LSTM 
(Long Short Term Memory) is exploited in most practical 
applications. LSTM has a lot of advantages over the simple 
RNN model in addition to alleviating the vanishing gradient 
problem.  

Formally, given the aggregate power series 1{ }T
t tx   as input, 

the RNN predicts the target power series ( )
1{ }i T

t ty   of each 
device i . This is a sequence to sequence generation process. 
And at each time step t  RNN predicts the corresponding ( )i

ty . 
The following formula describes this process.  

( ) ( ) ( ) ( )
1 2 1 2 1( , ,..., ; , , )i i i i

t T ty g x x x y y y                   (2) 

Given the input tx , LSTM computes its output by 
combining the information in its memory cell and hidden state 
with the input. The process can be written as 

 1[ , ]t i t t ii W h x b                               (3) 

 1[ , ]t f t t ff W h x b                              (4) 

  1tanh [ , ]t C t t CC W h x b                           (5) 

1* *t t t t tC f C i C                                  (6) 

 1[ , ]t o t t oo W h x b                               (7) 

 * tanht t th o C ,                                (8) 

where ti , tf , and to are the input gate, forget gate, and output 

gate respectively; tC is cell state and th is hidden state; and 

tC represents candidate cell state. And the target ( )i
ty is 

computed using th .  

In practice, LSTM layers are usually used together with 
other types of layers to form a deep RNN structure. The 
detailed architecture used in this paper is as follows: 

1. Input (length T is appliance specific window size) 
2. Parallel 1D convolution with filter size 3, 5, and 7 

respectively, stride=1, number of filters=32, 
activation type=linear, border mode=same 

3. Merge layer which concatenates the output of 
parallel 1D convolutions 

4. Bidirectional LSTM consists of a forward LSTM 
and a backward LSTM, output_dim=128 

5. Bidirectional LSTM consists of a forward LSTM 
and a backward LSTM, output_dim=128 

6. Dense layer, output_dim=128, activation 
type=ReLU 

7. Dense layer, output_dim= T , activation type=linear 
Here we use bidirectional RNN to utilize information from 

the whole sequence of 1{ }T
t tx  , including both history and future 

information for each time step t . Furthermore, we use multiple 
layers of LSTMs so that each of them learns features at a 
different time scale. 

IV. EXPERIMENTAL RESULTS 

In this section, we describe the evaluation of the proposed 
deep learning models for NILM. First we briefly introduce the 
data set and how we prepare training and testing data. Then we 
present our experimental results with quantitative evaluation of 
our methods on this dataset and some qualitative discussions.  

We evaluated our methods on the UK-DALE [16] dataset, 
which is currently the largest dataset for NILM research. More 
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specifically, we used the latest May 2016 release of this dataset. 
The UK-DALE dataset records power consumption of 5 houses 
in England. And for each house, it has both the whole-house 
mains power demand and the power demand of each individual 
appliance. For the majority of the power demand data, the 
sampling rate is 1/6 Hz. However, the sample rate of active and 
reactive mains power in houses 1, 2, and 5 is 1Hz, and we have 
to downsample them to 1/6Hz.  

We also used the five appliances as in [1], the kettle, dish 
washer, fridge, microwave oven and washing machine to 

TABLE I.  SETTINGS FOR EXTRACTING ACTIVATIONS 

Appliance 
On power 
threshold 
(watts) 

Min. on 
duration 

(seconds) 

Min. off
duration

(seconds)
Kettle 2000 12 100 

Dish washer 10 1800 1800 
Fridge 50 60 12 

Microwave 200 12 30 
Washing mach. 20 1800 160 

perform experiments. These devices consume the majority of 
energy and each of them exists in at least three houses in the 
dataset.  

For each appliance, we reserve data from one house (house 
5) for testing in the experiments. Furthermore, to train our 
models we use the last week of available data from each house 
for validation, and all other available data as training data. The 
NILMTK [17] toolkit is used to perform data preprocessing 
and activation extraction. Each device has its own usage 
patterns, and so the parameters for extracting activations differ 
between  

devices. And the detail settings of parameters are shown in 
Table I. We referenced the settings in [1] and modified them 
according to our own dataset.  

Using settings in Table I, we finally extracted activations of 
each appliance from data of each house. Table II and Table III 
show the activations for training and testing. As mentioned 
above, activations for validation comes from the same houses 
as those for training. More specifically, there are 154, 18, 651, 
101 and 17 validation activations for the kettle, dish washer, 
fridge, microwave oven and washing machine, respectively.  

TABLE II.  NUMBER OF ACTIVATIONS FOR TRAINING PER HOUSE 

Appliance\House 1 2 3 4 
Kettle 2995 757 43 711 

Dish washer 200 98 0 0 
Fridge 17006 3506 0 4663 

microwave 3483 422 0 0 
Washing machine 547 53 0 0 

TABLE III.  NUMBER OF TESTING ACTIVATIONS 

Appliance #activations 
Kettle 195 

Dish washer 46 
Fridge 2977 

microwave 66 
Washing machine 109 

We trained one network per target appliance since the 
consumption patterns between appliances differ greatly. As 
mentioned in section 3, the input of each network is a window 
of mains power, while the target (i.e. the desired output of the 
network) is the power demand of the target appliance. In 
addition, we chose a different window size for each device so 
that it is large enough to capture the majority of the activations 
of that device. In more detail, the window sizes are 40, 1075, 
465, 72 and 1246 for the kettle, dish washer, fridge, microwave 
oven and washing machine, respectively. The deep networks 
were trained using Keras [18] which is a well-known toolkit for 
building and tuning deep learning models.  

There are a number of metrics to measure the performance 
of energy disaggregation approaches, and here we use the most 
widely used Mean Absolute Error (MAE). Table IV presents 
MAE scores of our auto-encoder model PCNN_AE and our    
RNN model PCNN_LSTM as well as scores of baselines, 
where NILM_AE and NILM_LSTM are deep learning models 
proposed in [1], CO represents Combinatorial Optimization [3] 
and FHMM [5] is short for Factorial Hidden Markov Model. 

From Table IV, we can see that although our auto-encoder 
model does not get promising performance, our LSTM based 
recurrent model outperforms other approaches for every device.  
And this shows the effectiveness of our method that uses 
multiple CNN with varying filter size as feature extractors. The 

TABLE IV.  MAE OF EACH METHOD (IN WATTS) 

Method Kettle
Dish  

washer 
Fridge 

Micro-
wave 

Washing 
machine

CO 70.23 75.91 71.51 42.37 70.30 
FHMM 88.07 124.16 60.28 65.46 93.19 

NILM_AE 34.47 77.51 3.34 16.93 115.26 
NILM_LSTM 13.11 34.09 3.26 9.58 78.30 

PCNN_AE 51.64 67.34 3.46 27.50 83.40 
PCNN_LSTM 10.21 29.62 3.22 9.42 73.16 

NILM_LSTM model proposed in [1] achieves good 
performance as well, and this suggests the advantages of 
recurrent networks for the NILM task. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we have empirically studied energy 
disaggregation using based on learning models. We first 
formalized the NILM task into a sequence to sequence 
prediction problem. Then we presented the feature extracting 
method that uses a parallel of multiple convolution layers and 
describe two deep neural networks for NILM. Finally, we 
evaluated the performance of our methods using the largest 
NILM dataset available. The experimental results showed the 
advantages of our recurrent neural based model.  

Energy disaggregation (NILM) is a very challenging and 
can be improved in a number of ways. First, more data are 
required since deep learning models usually need a lot of 
training data. Second, the power consumption patterns of 
appliances differ greatly. And to achieve best performance, we 
may need to construct different models for each type of 
appliance. And finally, the LSTM model presented in this 
paper does not explicitly use the dynamic information of series 
in the prediction process. And the attention mechanisms which 
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have achieved great success in machine translation may also be 
promising in NILM. 
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