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Abstract.This paper presents a real-time calibration algorithm for tri-axial magnetometer. A 
non-linear state space model for calibration related parameters is derived by the invariance norm of 
local geomagnetic field, and cubature Kalman filter (CKF) is used to estimate calibrating 
parameters in sequential manner, which is more suitable for real-time critical applications. The 
effectiveness of the algorithm are verified by numerical simulations. The results are compared with 
the traditional TWO-STEP algorithm, and the corresponding conclusions are obtained. 

1. Introduction 

The three-axis magnetometer has critical applications in attitude and heading reference system 
(AHRS), trajectory measurement and magnetic anomaly detection and so on. In practice, there are 
non-negligible errors in the output of magnetometer, which must be calibrated before being used. 

The measurement errors include zero bias, non-uniform sensitivity, non-orthogonal, magnetic 
field offset and white noise. The maximum and minimum method[1] which calibrates the sensitivity 
and offset error. The TWO-STEP algorithm considering non-orthogonal factors is proposed in [2]. 
Similar methods based on Two-Step improves the performance using the total least squares 
method[3], adaptive least squares[4] and maximum likelihood estimation[5]. The abovementioned 
methods are all batch, which is difficult to implement in some real-time critical applications[6,7]. 
This paper proposed a real-time calibration algorithm for tri-axial magnetometer. A nonlinear state 
space model for calibration related parameters is derived according to the invariance norm of local 
geomagnetic field, which based a calibrating parameter estimation algorithm using cubature 
Kalman filter (CKF).  

The structure of this paper is as follows: In section 2, the model of three-axis magnetometer is 
established. In section 3, the state-space model of the calibration parameters and corresponding 
CKF steps are derived. Numerical simulation results and analysis are given in the section 4. The 
section 5 summarizes the work. 

2.Problem description 

A three-axis magnetometer measurement model can be obtained as following,  
 , , , ,( ' ' ' )B I

r k M NO SI I k k HI e k M s k    B S C C Γ B b n b n   (1) 

where MS  is the scaling error diagonal matrix, ,r kB is the output of magnetometer at time k , IB is 
local geomagnetic field. NOC is the non orthogonal matrix. 'SI SI C I C , 

' 'HI SI HIb C b , , ,' 'e k SI e kn C n . HIb  is the hard iron offset, SIC  is soft iron transform coefficient 
matrix, B

IΓ is the rotation matrix , Mb  is the zero offset, en  is external environment noise, sn  is 
sensor self-noise. Eq.(1) can be further written as 
 ,

C
r k K k  B CB b n  (2) 

where the total error matrix 'M NO SIC S C C , total offset vector 'M NO HI M b S C b b , 

4th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2016)

Copyright © 2016, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Computer Science Research, volume 50

297



noise , ,'k M NO e k s k n S C n n . Geomagnetic field in calibration frame ,
C B I
k I k kB B . hence,  

 1
,( ),C

k r k k
   B T B b n T C  (3) 

Therefore, by only estimating the matrixT  and the vectorb , then C
kB can be solved from the 

measured magnetic field ,r kB according to Eq. (3). 

3.Real-time self-calibration algorithm 

3.1 The State-Space Model of the Calibrating parameters.  
Since the norm local geomagnetic field mB  is a constant, and ,

B
I kΓ is orthogonal matrix, hence 

we have 

     2
, ,

T TC I B B I I
k k I k I mk k k B  B B B B   (4) 

Substituting Eq. (3) into (4), 
 2

, ,( ) ( )T T
r k k r k k m    B b n T T B b n B  (5) 

Let T T T A , Eq. (5) can be written as 
 2

, , , ,2 2( )T T T T T
r k r k r k r k k k k mA      B B B Ab b Ab b B An n An B  (6) 

At this time,  ,A b is the parameter to be estimated. A  can be parameterized as a symmetric 

matrix with diagonal elements A , B , C  and off-diagonal elements D , E , F . Similarly we let 

[   ]T
x y zb b bb , and further we let [         ]T

x y zA B C D E F b b bx , we have 
 1k kx x  (7) 

Take the sensor output , ,, ,[ , , ]x
r k r k

T
r k

y z
k rB B BB as known parameters, the implicit measurement 

equation for state x can be derived directly using Eq. (6) as follows,  
 2

1 2 3( ) ( ) 2 ( ) ( )m k k k kk kB h v h h h v     x x x x  (8) 

 1( )k k kh x L x  (9) 

2 , , , , , , , , ,( ) ( ) ( ) ( )x y z x y z x y z
k r k r k r k x r k r k r k y r k r k r k zh AB DB EB b DB BB FB b EB FB CB b        x  (10) 

  2 2 2
3 ( ) 2 2 2k x y z x y x z y zh Ab Bb Cb Db b Eb b Fb b    x  (11) 

 2 2 2
, , , , , , , , ,[( ) , ( ) , ( ) , 2 , 2 , 2 ,0,0,0]x y z x y x z y z

k r k r k r k r k r k r k r k r k r kB B B B B B B B BL  (12) 

 ,2( )T T
k r k k k kv   b B An n An  (13) 

where kv is noise term. Assume ( , )k kn 0 N  , [ ]T
k k kEN n n is the noise covariance matrix.  

To sum up, the calibrating parameter state space model can be obtained as follows 

 1

( )
k k

k k kh v


 
x x

y x
 (14) 

2 , 1, 2,...,k my B k N  , N is the number of samples measured. Through Eq. (8)-(14), we convert the 

real-time self-calibration problem into the filter estimation of the calibrating parameters. 
3.2 Cubature Kalman Filter (CKF).  

CKF is a LMMSE filter based on the third-order cubature rule. 1ˆ kx is the state estimation value 

at time 1k  ; 1kP is the state covariance matrix at time 1k  . Since the state is constant, hence the 

time update is simply  

 ˆ ˆ
kk

 x x , 1kk 
 P P  (15) 

For the measurement update, we first calculate the cubature points as,  

 , , ,
ˆ , ( ), 1, 2, , 2i k k i k i k i kh i n    X P x Z X   (16) 

further we calculate the prediction ˆk
z , the innovation covariance ,zz kP and the cross covariance ,xz kP , 

We finally get measurement updates as 
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, , , , , ,
1 1
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ˆˆ ˆ ˆ,

2 2

n n
T T T T

zz k i k i k k k k xz k i k i k k k
i i

r
n n

   

 

     P Z Z z z P X Z x z  (17) 

 ˆ ˆ ˆ( )k k k k k
   x x K z z  (18) 

where
2

,1
ˆ 1 2

n

k i ki
n


 z Z , 1

, , ,, T
k xz k zz k k k K zz k k

   K P P P P K P K , [ ]T
k k kr E v v . 

Since TA T T  is a symmetric matrix. The singular value decomposition [4] of A is performed as 
 TA = Q Q  (19) 
where  is a diagonal matrix, we thus have 

 TT Q Q  (20) 
By the calibration parameters ,T b , the calibrated magnetometer output can be obtained by Eq. 

(3).  

4.Results and Analysis 

In this section, the proposed method is verified by the simulation data. The results of the 

two-step calibration algorithm are also given as comparison. More detailed about TWO-STEP 

calibration method can be found in [1]. The non-orthogonal error angles are 

2   , 1   , 1.5   .The scaling (1.2,0.8,1.3)M diagS , hard iron [ 1.2,0.2, 0. G8]T
HI   b , the 

zero bias [1.5,0.4,2 G.7]T
M b , and the soft iron matrix are with elements less than 0.25 .The local 

geomagnetic field at the measuring point is [0.33,0.024,0.36] GI TB  in the NED frame. The 

noise density is 2 2 2diag( , , )k   N , 5G0.0  . The random attitude quaternion 

[cos(0.5 ),sin(0.5 ) ]T T q u  is used to simulate the rotation operation.  

Table 1 Results of the parameter estimation 
 

 A  b  

Ground true 
0.824 0.261 0.359

0.261 1.084 0.202

0.359 0.202 0.554

 
  
   

 
0.331

0 632

1.006

 
  
  

 

Proposed method 
0.816 0.247 0.354

0.247 1.068 0.192

0.354 0.192 0.556

 
  
   

 
0.328

0.633

1.010

 
 
 
  

 

TWO-STEP 
0.817 0.255 0.367

0.255 1.057 0.204

0.367 0.204 0.569

 
  
   

 
0.332

0 631

1.007

 
  
  

 

Table 1 shows the average results of parameter estimation using the proposed method and the 
Two-Step method after 50 Monte Carlo simulations. Obviously the real-time algorithm can estimate 
the parameters with good accuracy and the result is in the neighborhood with Two-Step method. 
Figure 1 shows the total field norm before and after calibration. It is shown that the norm of raw 
data are fluctuated significantly in the range of 0.6~2Gauss, while the norm after calibration are 
stable in the range of about 0.1 Gauss around the reference geomagnetic field. And close to the 
result after the TWO-STEP calibration. Figure 2 shows the measured geomagnetic field in the 
sensor frame before and after the calibration. The readings before calibration is distributed as 
ellipsoid, and the calibrated readings is a sphere with reference geomagnetic norm as its radius. 
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Fig.1 local geomagnetic field norm: Before and after calibration Fig.2 Sensor frame readings: Before and after calibration 

5.Summary 

A real-time calibration algorithm of tri-axial magnetometer is proposed. The proposed method 
overcomes the shortcomings of the off-line algorithm. Compared with the offline algorithm, this 
algorithm is more suitable for high real-time platform and which is difficult to implement a second 
calibration. 
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