
An Adaptive Algorithm of K-means on HSA
Platform

Zhenshan Bao
College of Computer Science

Beijing University of Technology
Beijing, China

baozhenshan@bjut.edu.cn

Qi Luo
College of Computer Science

Beijing University of Technology
Beijing, China

luoqi0620@emails.bjut.edu.cn

Wenbo Zhang
College of Computer Science

Beijing University of Technology
Beijing, China

zhangwenbo@bjut.edu.cn

Abstract—With the growing demand for high performance
computing, heterogeneous system, based on CPU-GPU
architecture, were widely applied because of its higher processing
capacity. To reduce the communication latency between CPUs
and GPUs or other agents, HSA (Heterogeneous System
Architecture) Foundation proposed a kind of an open industry
standards body. In this paper, we designed the K-means
algorithm on Kaveri APU, which complied with HSA standard,
and optimized it into an adaptive one to obtain high utilization
effect of both CPU and GPU. Experimental results show that our
adaptive algorithm gets a 45.2% average decrease in overall
execution time.

Keywords—Heterogeneous computing; HSA; K-means;
workload division

I. INTRODUCTION
In recent years, multi-core had becoming the inevitable

trend of the processor development. On the other hand, the
development of GPU (Graphics Processing Unit) was driven
by multi-core era, semiconductor technology greatly help the
GPU precision and complexity of growth. Modern GPUs were
not only the powerful graphics engines, but also the highly
parallel programmable processors, its computing capacity and
memory bandwidth far exceeded the CPU (Central Process
Unit) [1]. In order to get better adaption in high performance
computing, GPU-CPU heterogeneous architectures had been
increasingly adopted in scientific research. Because of GPUs’
capabilities of providing high computational throughput and
the combination of CPU and GPU, GPU-CPU heterogeneous
architectures could coordinate and handle the serial working
mode and parallel working mode. For example, the recently
built supercomputer Tianhe-2 was the world's fastest
supercomputer according to the TOP500 lists for June 2013,
November 2013, June 2014, November 2014, June 2015, and
November 2015.

In addition, we must have a better understanding of
hardware during the process of development, because GPU
Programming technology was so difficult. With CUDA
(Compute Unified Device Architecture) and OpenCL (Open
Computing Language) releasing, developers need not to pay
attention to the hardware and were liberated from the heavy
development task. There still were some problems in CPU-
GPU heterogeneous system, so AMD joint other
manufacturers put forward a new industry standards body

focused on making it dramatically easier to program
heterogeneous computing devices, the industry standards body
aimed to solve the communication delay between CPU and
GPU. Compared with traditional CPU-GPU heterogeneous
systems, HSA had a lot of ascension, the most important one
was heterogeneous Uniform Memory Access (hUMA). Based
on the feature, GPU and CPU could have the same status in
the process of computing tasks. Our paper designed a K-
means algorithm on HSA platform which is similar to original
CUDA implementation. More importantly, we designed an
adaptive algorithm of k-means by using the characteristics of
hUMA and making full use of CPU resources.

The rest of this paper is organized as follows. In section II,
highlights the differences between this paper and related work.
Then an overall about algorithm design and implementation of
strategy will be described in Section III. Some preliminary
experiment results are presented and discussed in section IV.
Section V summarize this work and describes the future works
of implementation of strategy in HSA.

II. RELATED WORKS AND MOTIVATION
This section introduces the HSA system, related works and

motivation for this study. Section A describes the features of
HSA. Section B describes the K-means model, Section C
presents some existing research about our works. Section D
describes the details of the problem to be solved.

A. HSA
In traditional heterogeneous computing platforms, GPU

and CPU are relatively independent of each other. There are
no unified software environment and ability to
deal with procedures calling CPU and GPU automatically. In
order to integrate the discrete CPU and GPU, AMD and some
manufacturers set up HSA Foundation. The Heterogeneous
System Architecture (HSA) is designed to efficiently support a
wide assortment of data-parallel and task-parallel
programming models. A single HSA system can support
multiple instruction sets based on host CPUs and kernel agents.
By reshaping computing systems, processing units that is
divided on the same platform closely integrated to a single
chip. By using HSA, program can be set up data structure in
the unified address space and create a task in the proper
processor. The motivations of HSA Foundation is to improve
portability, programmability, manageability and performance

International Conference on Computer Science and Electronic Technology (CSET 2016)

© 2016. The authors - Published by Atlantis Press 136

CPU GPUHW

Coherency

Physical Memoty

Virtual Memoty

Application

CPU GPU

Application Task Queues Application Task Queues

Dataset:N
The number of clusters:K

The distance of center
sample points:d(ni,ki)

Get the new center of Each
cluters

Input the center of Each
cluters

Iteration
Is

complete
d or not

NO

end

YES

for the next-generation heterogeneous computing. There are
two essential features for users: one is hUMA; the other is
heterogeneous Queuing (hQ).

1) hUMA
In the past, even if the GPU and CPU are integrated into

the same chip, CPU and GPU data storage areas are
independent of each other, chips get memory space
information still have to undergo complex processes when
performing general purpose computation. When the part of
CPU program is operated on the GPU, all the information on
the CPU storage area must be copied to the GPU's storage.
And when the operation of GPU is completed, the data will be
copied to the CPU. In order to solve this problem, HSA
Foundation announced hUMA technology, through the hUMA,
CPU and GPU can share the same storage space, and CPU can
directly access the GPU memory address. In addition, the
range of memory that the GPU can access in HSA is now as
large as the virtual memory space allows, it can significantly
simplify programming on GPU or other accelerators. As
shown in Figure 1, GPU and CPU have uniform visibility into
entire memory space.

Fig. 1. HUMA technology

2) hQ
HSA devices communicate with one another using queues.

Queues are an integral part of the HSA architecture. [2] HSA
supports hQ which aims to simplify the distribution of
computational jobs among multiple CPUs and GPUs from the
programmer's perspective. As shown in Figure 2, GPU and
CPU have equal flexibility to be used to create and dispatch
work items.

Fig. 2. HQ technology

In the traditional mode, the CPU occupied the dominant
position, it can rapidly direct the distribution of task to itself or
the GPU. When assigned to the GPU, it must be undergo
complex process for copying data. At the same time, it need

transcoding through operating system services and kernel
mode when the tasks are assigned to the GPU, the scheduling
overhead has a great delay. hUMA, famous for the uniform
memory access model, is the basis of hQ, and it made the
GPU work with the CPU by using shared memory, the GPU
can directly access to user tasks in memory, resulting in
performance ascension.

B. K-means
K-means algorithm is put forward by j. b. Mac Queen[3] in

1967, it is a classical cluster algorithm based on partition. It
had become one of the most widely used clustering algorithm
in the field of data mining, machine learning, pattern
recognition and quantity statistics, because it had high
efficiency and was easy to be combined with other methods.
K-means cluster algorithm aims to partition n observations
into k clusters in which each observation belongs to the cluster
with the nearest mean, serving as a prototype of the cluster.
The flow diagram of algorithm is shown in Figure 3.

Fig. 3. Diagram of algorithm

C. Related works
There are some existing research efforts to use CPU-GPU

heterogeneous systems. Chen et al. [4] designed a new parallel
algorithm which exploits the parallelism of the column of
similarity matrix to parallelize the Smith-Waterman algorithm
on a heterogeneous system based on CPU and GPU. Klages et
al. [5] proposed optimal task split between CPU and GPU
where GPU is only used to compute the calculation of the
particle force. In order to improve the performance of the
traditional LSM both in terms of efficiency and effectiveness,
Balla-Arabé et al. [6] proposed a novel algorithm based on the
lattice Boltzmann method (LBM).

Recently, K-means implementation on the GPU drawn the
attention of researchers. Zechner et al. [7] proposed an
optimized k-means implementation on CUDA. While their
target was solely to best exploit the computational capabilities
available by using CUDA. Li et al. [8] designed an algorithm

137

that exploits GPU on-chip registers to significantly decrease
the data access latency. Compared with those previous studies
that only pay close attention to GPU cores, our adaptive
algorithm coordinates both GPU cores and CPU cores for
maximized efficiency. Recently, Ma et al. [9] used linear
regression models to estimate the performance and power of
GPU applications in order to decide where (and how) to run
GPGPU (General Purpose Graphics Processing Units)
programs. However, the coordination between CPU and GPU
is not effective in their work.

D. Motivation
CPU-GPU heterogeneous systems transferred data slowly

between CPU and GPU before HSA platform appeared. In
such an environment, GPUs were assigned to the most of
computing workload, and thus they provided up to 10 times
the computing capacity of CPUs. However, in practical
applications, CPUs are often idle while GPUs take all the
workloads. Compared with the use of CPU, it would spend too
much time on data transmission before HSA platform
appeared. Nowadays, Unified Coherent Memory enables all
compute elements to have access to the same data, so it
enables the application to run on the best compute element.

If the resources of CPU would be used efficiently in
heterogeneous systems, it could reduce the task execution time
and further improve the performance of HSA. As mentioned,
if the data transmission consumption between CPUs and
GPUs could be reduced or removed, the total execution time
can be further reduced. Nowadays, the emergence of HSA can
realize our ideas. In addition, GPU and CPU are used as a
combined computing unit, which makes a good use of all the
available hardware resources.

III. ADAPTIVE ALGORITHM OF K-MEANS
Since workload division within an application was a

software problem by nature, it did not suit for on-chip
hardware implementation. Therefore, we only have to design
our algorithm on software level. CPU and GPU were
independent of each other in the traditional CPU-GPU
heterogeneous system, data was transmitted between CPU and
GPU through PCI-E bus and data transfer was slow. As a
result, we could import data to the GPU memory for parallel
processing at one time, even though large amount of data
would be processed. Firstly, we used the original algorithm
idea on HSA platform. According to the research on
parallelism of K-means algorithm, it need to calculate the
distance from each sample points to all central point and get a
new clustering which was composed of shortest distance
points[10]. The process was conducted on the GPU for
parallel processing, then the processing result was passed to
the CPU. Our main job was to improve this process.

 First of all, it should be pointed out that, tasks on the host
will be through the function (hsa_signal_wait_acquire)
waiting for the signal that the GPUs completed the tasks, after
informing GPU agent of running the program. This function
would call “WaitRelaxted” (in HSA runtime library) to loop
with reading the value of the semaphore, this operation with
the method of continuous polling would cause the task
deadlock which was waiting for the change of the semaphore,

the result was that the host always occupied a core of CPU on
the task, but the other cores of CPU always were idle. We
used the synchronous operation to protect the shared data sets
in the CPU and GPU tasks. We used the
“pthread_mutex_lock” to protect for the description of the
data to be processed.

Our algorithm was based on ‘pthread_mutex_lock’.
Because there was one core at full capacity, other three core
were not used. We created three threads for other three core by
pthread and one thread for GPU. Firstly, we have to chop
workload in pieces, then we respectively assigned a piece
workload for each thread. Once thread have finish working,
we assigned next piece workload for it. We used
‘pthread_mutex_lock’ to control coordination mechanism.

IV. EXPERIMENTAL RESULTS
In this section, we will introduce our experimental

environment and our experimental results.

A. Environment
Our hardware environment was given priority to AMD

APU. We use A10-7850K in our test bed. A10-7850K was the
first formal comprehensive products supporting hUMA
technology. The operating system is Ubuntu 15.04 with a
Linux kernel 3.19. We used kfd v1.4 HSA drivers and the
HSA Runtime 1.0f. We used AMD CodeXL which was a
comprehensive tool to obtain the GPU utilization and usage
time. It turned out on a Linux system there was this command
called "time" for application execution time. Final result was
based on the average of multiple tests.

B. Experimental results
Firstly, in order to verify our algorithm which can improve

the execution efficiency, we defined the percentage of work
that GPU took in an iteration as r. Then CPU took the rest 1 –
r percentage of the work. The value of r was from 0 to
100.The data we used have 1 million data points, each point
has 34 properties and the initial number of cluster is 10. We
can find that the optimal value of r is between 50 to 70. The
experimental results is shown in Figure 4. As a result, the
efficiency is improved. On the other hand, we could find that
the computing power of GPU is far more than the CPU.

Fig. 4. Fixed workload division

We divide the work into n equal parts, CPU and GPU are
assigned a part of work for each. Once the CPU or GPU is
performed, the next part of work would be assigned to it. As
the whole data size is different, the number of iterations will

138

be different. Our test results are the previous 100 iterations
time. The data points we used is from 0.1 million to 1.9
million, each point has 34 properties and the initial number of
cluster is 10. Figure 5 presents the execution time of our
scheme compared with GPU takes all work. The Figure 5
shows that our approach saves 52.64% of execution time on
average.

We now give an analysis of the performance of adaptive
algorithm of k-means. Firstly, original algorithm only use
GPU during the process of classifying clusters, besides, the
adaptive algorithm use three thread for parallel processing on
CPU. There is no the consumption of data copying and
workload adds a work object, so the performance of adaptive
algorithm increase significantly.

Fig. 5. Adaptive algorithm and original algorithm of k-means under

different scale of data

V. CONCLUSION AND FUTURE
Current research on GPU-CPU architectures focuses

mainly on the hardware aspects, while the workload division
between GPU and CPU of such systems receives much less
attention. There are few existing studies that start to use CPU
to handle the workload, but it is limited by slow data transfer
between CPU and GPU. In this paper, we have presented an
adaptive algorithm of k-means on HSA platform. Our solution
features an adaptive algorithm design. We implement the
adaptive algorithm using the HSA framework on a real
physical test bed with AMD A10-7850K. Experiment results
show that our algorithm achieves 52.64% average time
savings. On the one hand, the algorithms are ported to HSA
will be more and more, the adaptive framework would suit
other algorithms. On the other hand, the energy efficiency of
such systems receives much more attention. In the future, we

will study a set of adaptive framework and energy efficiency
of HSA.

The growth of heterogeneous systems represents a solid
trend in modern systems, and we believe that future work on
other machine learning algorithm in this domain can benefit
from the promising insights into scalability demonstrated by
our experimental study.

ACKNOWLEDGMENT
This work was founded by the significant special project

for Core electronic devices, high-end general chips and basic
software products (2012ZX01039-004).

References

[1] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., &
Phillips, J. C. (2008). Gpu computing. Proceedings of the IEEE, 96(5),
879-899.

[2] Blinzer, P. (2014). The Heterogeneous System Architecture: It's beyond
the GPU. International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (pp.iii-iii). IEEE.J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68-73.

[3] Chen, B., Xu, Y., Yang, J., & Jiang, H. (2010). A New Parallel Method
of Smith-Waterman Algorithm on a Heterogeneous Platform..
Algorithms & Architectures for Parallel Processing, International
Conference, Ica3pp, Busan, Korea, May (Vol.6081, pp.79-90).

[4] Queen, J. M. (1967). Some methods for classifications and analysis of
multivariate observations. Berkeley University of California Press, 281--
297.

[5] Klages, P., Bandura, K., Denman, N., Recnik, A., Sievers, J., &
Vanderlinde, K. (2012). Astrophysical particle simulations on
heterogeneous cpu-gpu systems. Hep Websearch Hep.

[6] Balla-Arabé, S., Gao, X., Ginhac, D., & Yang, F. (2016). Shape-
constrained level set segmentation for hybrid cpu–gpu computers.
Neurocomputing, 177, 40-48.

[7] Zechner, M., & Granitzer, M. (2009). Accelerating K-Means on the
Graphics Processor via CUDA. First International Conference on
Intensive Applications and Services (pp.7-15). IEEE Computer Society.

[8] Li, Y., Zhao, K., Chu, X., & Liu, J. (2013). Speeding up k -means
algorithm by gpus. Journal of Computer and System Sciences, 79(2),
216-229.

[9] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “GreenGPU: A
Holistic Approach to Energy Efficiency in GPU-CPU Heterogeneous
Architectures,” in Proc. of the Int’l Conf. on Parallel Processing
(ICPP),2012.

[10] Zailong, W. U., Zhang, Y., Jianliang, X. U., Jia, H., Yan, S., & Xie, Q.
(2014). Research on kmeans algorithm optimization based on opencl.
Journal of Frontiers of Computer Science & Technology.

139

	Introduction
	Related works and motivation
	HSA
	hUMA
	hQ

	K-means
	Related works
	Motivation

	Adaptive Algorithm of K-means
	Experimental results
	Environment
	Experimental results

	Conclusion and future
	ACKNOWLEDGMENT
	References

