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Abstract. This paper is concerned with the design of distributed fusion filter for networked systems 
with unknown measurement interferences and packet dropouts. A Bernoulli distributed random 
variable is used to depict the phenomenon of packet dropouts. Without any prior information about 
the interference, a recursive Kalman-type state filter independent of the unknown interferences is 
designed for each sensor subsystem by applying the linear unbiased minimum variance estimation 
criterion. Based on the state filters of individual subsystems, the estimation error cross-covariance 
matrices between any two subsystems are derived. Then, the distributed fusion filter is designed by 
using the matrix-weighted fusion estimation algorithm in the linear minimum variance sense. 
Simulation results show the effectiveness of the proposed algorithms. 

Introduction 
With the rapid development of electronics, communication and computer technologies, 

networked control systems have been gradually applied to all aspects of productions and lives due 
to the convenient connection mode and high-speed transmission. The state estimation problems for 
networked control systems have attracted the interests of many scholars [1-4]. However, the 
networks bring convenience meanwhile introduce a lot of uncertainties. Due to the limitation of 
network bandwidths, there are the transmission delays and losses of data. 

There are many reports about the state estimation problems for systems with time delays and 
packet dropouts [5-8]. A linear minimum variance filter dependent on the probability of missing 
measurements is presented in [5]. The optimal linear estimation problem about multiple packet 
dropouts is studied in [6]. The missing measurements and time-varying delays existing in uncertain 
stochastic networks are considered in [7]. Ref. [8] proposes a state filter for networked systems with 
multiple random delays and packet losses. In addition, the external interferences and syntheses of 
device failures have effect on the sensor outputs, which results in the uncertainties of measurement 
outputs. In recent years, the state estimation for systems with unknown inputs has also become a hot 
research topic [9-11], especially in the application of fault diagnosis. A fault diagnosis method 
based on the optimal unknown input observer is presented in [12]. Ref. [13] proposes a fault 
detection filter for linear discrete time-varying systems with multiple packet dropouts. Ref. [14] 
gives a fusion predictor for multi-sensor systems with missing measurements and unknown 
measurement interferences, where the computation of the state second-order moment is required. 

Based on the results of references above, for the multi-sensor networked systems with unknown 
measurement interferences and packet dropouts, we present a recursive Kalman-type local state 
filter independent of unknown interferences for each sensor subsystem based on the linear unbiased 
minimum variance estimation criterion [15]. Further, the estimation error cross-covariance matrices 
between any two subsystems are derived. At last, we give the distributed fusion filter weighted by 
matrices in the linear minimum variance sense. Differently from [14], the computation of the state 
second-order moment is avoided. 
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Problem formulation 
Consider a multi-sensor linear discrete stochastic system with unknown measurement 

interferences and packet dropouts: 
( 1) ( ) ( )x t x t w t+ = Φ +Γ                                                        (1) 
( ) ( ) ( ) ( ), 1, 2, ,i i i i iy t H x t v t D t i Lθ= + + =                                          (2) 
( ) ( ) ( ), 1, 2, ,i i iz t u t y t i L= =                                                     (3) 

In the type: ( ) nx t R∈  is the state, ( ) im
iy t R∈ is the measured output of the ith sensor, which 

will be transmitted to the filter through networks, ( ) im
iz t R∈ is the measurement received by the 

filter, and ( ) ip
i t Rθ ∈  signifies the unknown sensor measurement interference. L is the number of 

sensors. ( ) rw t R∈ and ( ) im
iv t R∈  are the process and measurement noises. { ( )}iu t  is a known 

white Bernoulli distributed stochastic sequence taking values 1 and 0 with the probability 
{ }Prob ( ) 1i iu t α= = , { }Prob ( ) 0 1i iu t α= = − , 0 1iα≤ ≤ , and independent of other stochastic 

variables. If ( ) 1iu t = , the measurement of the thi  sensor is received during transmissions, 
otherwise, the filter receives nothing, which means packet dropout. Moreover, Φ , Γ , iH  and 

iD  are constant matrices with suitable dimensions. 
We will present our main results based on the following assumptions. 
Assumption 1: ( )w t  and ( )iv t  are uncorrelated white noises with mean 0 and the variances 

0wQ ≥  and 0
ivQ > . 

Assumption 2: The initial state (0)x  is uncorrelated with ( )w t , ( )iv t  and ( )iu t , and satisfies 
T

0 0 0 0E{ (0)} ,E{[ (0) ][ (0) ] }x x x Pµ µ µ= − − =                                      (4) 
where symbol E denotes the mathematical expectation, T is the transpose operator. 

Assumption 3: rank[ ]i i iD p m= < , rank[ ]∗  denotes the rank of matrix ∗ . 
The objectives of this paper are to design the recursive Kalman-type local state filter ˆ ( )ix t  by 

applying the linear unbiased minimum variance estimation criterion based on the received 
measurements ( ( ), ( 1), , (1))i i iz t z t z−   of the ith sensor and the distributed fusion filter ˆ ( )ox t . 

Local state filter design 
In this section, since there is not any prior information about the interferences, a recursive 

Kalman-type local state filter independent of the unknown interference will be designed. 
Theorem 1: For system (1)-(3) under Assumptions 1-3, the recursive local state filter is 

calculated as follows: 
ˆ ˆ ˆ( 1) ( ) ( 1) ( 1)[ ( 1) ( )]i i i i i i ix t x t u t K t z t H x t+ = Φ + + + + − Φ                               (5) 

where 
T T T 1( 1) [ ( ) ( 1) ] ( 1)i i i i i iK t P t H t D C t−+ = −Λ + +                                       (6) 

T T 1 T 1 1( 1) ( ) ( 1) [ ( 1) ]i i i i i i i it P t H C t D D C t D− − −Λ + = + +                                   (7) 
T( 1) ( )

ii i i i vC t H P t H Q+ = +                                                     (8) 
The filtering error variance matrix is given as 

T( 1) ( ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( )i i i i i i i i i iP t P t u t K t C t K t u t K t H P t+ = + + + + + − + +  
T T T( 1) ( ) ( 1)i i i iu t P t H K t− + +                                                    (9) 

where 
T T( ) ( )i i wP t P t Q= Φ Φ +Γ Γ                                                    (10) 

with the initial value 0ˆ (0)ix µ=  and 0(0)iP P= . 
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Proof: ① When ( 1) 1iu t + = , i.e., there is not packet dropout for the ith sensor subsystem, we 
will design the following recursive Kalman-type local state filter 

ˆ ˆ ˆ( 1) ( ) ( 1)[ ( 1) ( )]i i i i i ix t x t K t z t H x t+ = Φ + + + − Φ                                    (11) 
From (1)-(3) and(11), the filtering error equation of the ith subsystem is derived as follows: 

ˆ( 1) ( 1) ( 1)i ix t x t x t+ = + − +  
[ ( 1) ] ( ) [ ( 1) ] ( ) ( 1) ( 1) ( 1) ( 1)i i i i i i i i i iI K t H x t I K t H w t K t v t K t D tθ= − + Φ + − + Γ − + + − + +      (12) 

From the unbiasedness E[ ( )] 0ix t = , we have 
( 1) 0i iK t D+ =                                                            (13) 

Substituting (13) into (12) yields 
( 1) [ ( 1) ] ( ) [ ( 1) ] ( ) ( 1) ( 1)i i i i i i i ix t I K t H x t I K t H w t K t v t+ = − + Φ + − + Γ − + +                 (14) 

Substituting (14) into T( 1) E[ ( 1) ( 1)]i i iP t x t x t+ = + +   yields the filtering error variance as follows: 
T T T T( 1) [ ( 1) ] ( ) [ ( 1) ] [ ( 1) ] [ ( 1) ]i i i i i i i i w i iP t I K t H P t I K t H I K t H Q I K t H+ = − + Φ Φ − + + − + Γ Γ − +  

T( 1) ( 1)
ii v iK t Q K t+ + +                                                       (15) 

Arranging and simplifying (15) gives 
T T T T( 1) ( ) ( 1) ( 1) ( 1) ( 1) ( ) ( ) ( 1)i i i i i i i i i i iP t P t K t C t K t K t H P t P t H K t+ = + + + + − + − +           (16) 

where ( )iP t  and ( 1)iC t +  are defined by (10) and (8), respectively. 
Applying the linear unbiased minimum variance estimation criterion [16], under the constraint 

condition (13) we introduce the auxiliary equation as follows: 
T( 1) tr{ ( 1)} 2tr{ ( 1) ( 1) }i i i i iJ t P t t K t D+ = + + Λ + +                                   (17) 

Where tr{ }∗  denotes the trace of the matrix ∗ . To minimize the performance index ( 1)iJ t + , 
letting ( 1) ( 1) 0i iJ t K t∂ + ∂ + =  and using the derivative formula for trace of matrix [15], we have 

T T T( 1) ( 1) ( 1) ( )i i i i i iK t C t t D P t H+ + +Λ + =                                         (18) 
Combining (13) with (18) gives the matrix equation 

T

T T

( 1) ( 1) ( )
0 ( 1) 0

i i i i i

i i

C t D K t H P t
D t
+    + 

=     Λ +    
                                         (19) 

From Assumption 1 and Assumption 3, we find that the inverse of coefficient matrix in (19) exists. 
Then, we have the solutions (6) and (7). 
② When ( 1) 0iu t + = , i.e., there is packet dropout, since no measurement is available, we will 
predict based on the estimate at last time, i.e., 

ˆ ˆ( 1) ( )i ix t x t+ = Φ                                                           (20) 
Then, the estimation error equation is given as 

ˆ( 1) ( 1) ( 1) ( ) ( )i i ix t x t x t x t w t+ = + − + = Φ +Γ                                        (21) 
The estimation error variance can be calculated as 

T T( 1) ( )i i wP t P t Q+ = Φ Φ +Γ Γ                                                  (22) 
In summary, (11) and (20) yield (5). (16) and (22) yield (9). This proof is completed. 

Distributed fusion filter 
Theorem 2: For system (1)-(3) under Assumptions 1-3, according to the case whether the 

measurement is received by the filter, we discuss the calculation formula for the estimation error 
cross-covariance matrix as follows: 

T T T( 1) [ ( 1) ( 1) ][ ( ) ][ ( 1) ( 1) ]ij i i i ij w j j jP t I u t K t H P t Q I u t K t H+ = − + + Φ Φ +Γ Γ − + +          (23) 
with the initial value 0(0)ijP P= . 

Proof: If the measurements from the ith and jth sensors are both received by the filter, 
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( 1) 1iu t + =  and ( 1) 1ju t + = . From (14), the filtering error equations are given as 
( 1) [ ( 1) ] ( ) [ ( 1) ] ( ) ( 1) ( 1), ,s s s s s s s sx t I K t H x t I K t H w t K t v t s i j+ = − + Φ + − + Γ − + + =          (24) 

Substituting (24) into the estimation error covariance matrix T( 1) E[ ( 1) ( 1)]ij i jP t x t x t+ = + +   yields 
T T T( 1) [ ( 1) ][ ( ) ][ ( 1) ]ij i i ij w j jP t I K t H P t Q I K t H+ = − + Φ Φ +Γ Γ − +                      (25) 

If the measurements from one of the ith and jth sensors are received by the filter, without loss of 
generality, assuming the measurements of the ith sensor are received, ( 1) 1iu t + =  and ( 1) 0ju t + = . 
The filtering error equation for the ith sensor is given by (24). From (21), the prediction error 
equation for the jth sensor is given as 

( 1) ( ) ( )j jx t x t w t+ = Φ +Γ                                                      (26) 

Substituting (24) and (26) into T( 1) E[ ( 1) ( 1)]ij i jP t x t x t+ = + +   yields 
T T( 1) [ ( 1) ][ ( ) ]ij i i ij wP t I K t H P t Q+ = − + Φ Φ +Γ Γ                                   (27) 

If the measurements from the ith and jth sensors are both lost, ( 1) 0iu t + =  and ( 1) 0ju t + = . 
The prediction error equations of two sensors are given by (26). Substituting (26) into 

T( 1) E[ ( 1) ( 1)]ij i jP t x t x t+ = + +   yields 
T T( 1) ( )ij ij wP t P t Q+ = Φ Φ +Γ Γ                                                 (28) 

Summarizing (25), (27) and (28), we have (23). This proof is completed. 
Based on local filters in Theorem 1 and the cross-covariance matrices in Theorem 2, we have the 

following distributed fusion filter by using the matrix-weighted fusion estimation algorithm in the 
linear minimum variance sense [16]: 

1

ˆ ˆ( ) ( ) ( )
L

o i i
i

x t A t x t
=

=∑                                                         (29) 

The matrix ( )iA t , 1, 2, ,i L=  , are computed by 
T 1 1 T 1

1 2( ), ( ), , ( ) ( ( ) ) ( )LA t A t A t e t e e t− − −  = Σ Σ                                      (30) 

where [ ]T, , ,e I I I=  is a matrix with nL n×  dimension, ( )tΣ  is an nL nL×  matrix whose (i, j)th 
block element is ( )ijP t . The variance matrix of the distributed fusion filter is 

T 1 1( ) ( ( ) )oP t e t e− −= Σ                                                         (31) 
Moreover, we have ( ) ( ), 1, 2, ,o iP t P t i L≤ =  . 

Simulation example 
Consider the following tracking system 

21 / 2
( 1) ( ) ( )

0 1
T T

x t x t w t
T

  
+ = +   

   
                                            (32) 

( ) ( ) ( ) ( ), 1, 2,3i i i i iy t H x t v t D t iθ= + + =                                           (33) 
( ) ( ) ( ), 1, 2,3i i iz t u t y t i= =                                                     (34) 

Sampling period is T=0.5, the observation matrices are 1

1 2
0 1

H  
=  
 

, 2

1 0
2 1

H  
=  
 

, 3

2 1
1 1

H  
=  
 

. The 

white noise ( )w t with variance 1wQ =  is uncorrelated with white noises ( )iv t  with variances 

1 20.36vQ I= , 
2 20.81vQ I=  and 

3 20.64vQ I= , respectively, and 2I is a 2 2×  identity matrix. The 
unknown interferences in the measurement outputs are set as 1( ) 3tθ = , 2 ( ) 0.1t tθ =  and 

3( ) 2sin( / 2)t tθ = . T
1 [1,1]D = , T

2 [2,1]D = , T
3 [1,3]D = . The initial values are T(0) [0,0]x = and 

0 20.01P I= . We take 100 sampling data. Our aim is to design the distributed fusion filter ˆ ( )ox t .  
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Fig.1. Distributed fusion state filter 

 
Fig.2. Comparison of filtering error variances 

 
Fig.3. Comparison of tracking performance of the filters in this paper and [17] 

 
Fig.1 gives the tracking performance of the distributed fusion state filter. It is clear that the 

designed fusion filter has good tracking performance. The filtering error variances of local filters 
and the distributed fusion filter are shown in Fig.2. We see that the distributed fusion filter has 
better accuracy than local filters, which verifies the effectiveness of the algorithms in this paper. 
Fig.3 gives the comparison of our filter and [17] for sensor 1. From Fig.3, we see that our filter has 
better tracking performance than [17] since packet dropout is not taken into account in [17]. 

Conclusion 
Distributed fusion filter has been designed for networked systems with packet dropouts and 

unknown measurement interferences. Without any prior information about the measurement 
interferences, we have proposed the recursive Kalman-type local state filters independent of 
unknown interferences for individual sensor subsystems. Based on the local state filters, the 
estimation error cross-covariance matrices between any two local filters are derived. At last, the 
distributed fusion filter weighted by matrices is obtained. 
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