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Abstract—Minimization technique is used on the Nehari 
manifold for p-Laplace equation with a nonhomogeneous 
nonlinearity where compactness is not guaranteed. In the space 
of radial functions, the point overcoming the lack of compactness 
is to show that the minimizing sequence converges in a strong 
enough sense to pass to the limit in the nonlinear term. The 
nontrivial radial solution is found by restoring compactness in 
such space.  
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I INTRODUCTION 

There is by now a vast literature on p-Laplacian. A good 
starting point is Garcia Azorero and Peral [1] . A systematic 
treatment of many questions concerning the p-Laplacian can 
be found in the book by Lindqvist [2] and Fan [3] . Recently the 
existence and nonexistence by virtue of critical point theory 
are discussed in [4 6] . The method of minimization on the 
Nehari manifold [7 9] is particularly useful for 
nonhomogeneous nonlinearities, for which minimization on 
spheres does not apply. A rather detailed exposition can be 
found in the books by Willem [10] , and [11]Kuzin Poho aev Ž ; 

the application given in [11]  concerns problems on unbounded 
domains. The reasons for this often come from geometrical or 
physical aspects of the problem, in [12] , Struwe introduced 
application to nonlinear partial differential equation an 
Hamiltonian systems via variational method. Badiale and 
Serra [13] present some examples where compactness is not 
guaranteed a priori. The lack of compactness can take 
different forms, but in the simplest case, it is manifest through 
the fact that minimizing sequences are maybe bounded, but 
not (pre-)compact in the function spaces where the problem is 
set. Here we confine ourselves to some more or less simple 
example with lack of compactness which takes place when 
one works in unbounded open sets NR . The reason for this is 
the invariance of NR with respect to translations , which in 
turn makes the embedding of 1, pW where 1 p N  

into ( )q NL R not compact for any q where  


Np
q p

N p
. A  

natural attempt overcome this problem is to guess that 
translational invariance is the only reason for the failure of 
compactness, and to try to work in a space of functions where 
translations are not allowed. This is possible in this case 

because the problem is also invariant under rotations, so that 
one can try to work in spaces of radial functions [14 15] . 

II PRELIMINARIES 

We treat the p-Laplacian equation on NR with 3N : 

2 2

1,

,

( )

   




q r N
p

p N

u u u u u in R

u W R



               (1) 

where R ,1 p N and   p r q p . A weak solution of 

(1) is a function 1, pu W  such that 1, ( )p Nv W R   

2 2 2

N N N

p q r

R R R
u u vdx u uvdx u uvdx

  
       

Define  1, ( )  p N
rW u W R u is radial . More precisely, 

we give a pointwise estimate for functions in rW . 

Lemma 2.1 There exists a constant 0C such that for 
every  ru W  

( ) 
N p

p

u
u x C

x
for every 0x .                 (2) 

We prove that the heuristic idea that translations are the 
only obstruction to compactness is correct. The Sobolev 
inequalities on NR show that rW is continuously embedded into 

( )q NL R  for  


Np
q p

N p
. The following lemma proves 

this embedding is compact if  


Np
q p

N p
. 

Lemma 2.2 [16] (Rellich-Kondrachov Compactness 
Theorem) Assume U is a bounded open subset 
of NR and U is 1C . Suppose 1 p N .Then 1, ( )pW U is 

compactly embedded in ( )qL U for1  q p .    

Lemma 2.3 Let *( , )q p p . Then the embedding of rW  

into ( )q NL R is compact. 
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Proof It is enough to show that if  k k
u is a sequence 

in rW such that 0ku  , then 0ku in ( )q NL R . From 
Lemma 2.2, assume 

0 ( ) 0 . . 
q N

k loc ku in L R and u a e 

Let  1  NB x R x be the unit ball of NR .We can 

get 

(1)      N c c

q q q q

k k k kR B B B
u dx u dx u dx u dx 



Fix *l p ,by Lemma 2.1, in cB we have, for some 
appropriate constant C , 

( ) l

k N p
l

p

C
u x

x 

And 



N p

l N
p

. This shows that 11
( )  c

N p
l

p

L B
x

, and 

then , by dominated convergence 

0 c

l

kB
u dx



Let now (0,1)t  be such that (1 )  q pt l t ; by 

the Holder inequality we can write 

   (1 )
(1 )


    c c c c

t tq pt p ll t

k k k k kB B B B
u dx u u dx u dx u dx



Since the sequence  c

p

kB k

u dx is bounded and
c

l

kB
u dx  

0 , we immediately obtain 0 c

q

kB
u dx , so that 

0 N

q

kR
u dx



Lemma 2.4 [15]  For every 1, ( ) p Nu W R , 0u , there 

exists * , ru W * 0u , , 1for all p q   

* *
N N N N

p p q q

R R R R
u dx u dx and u dx u dx            (3) 

III Main Results 

Theorem 3.1 Problem (1) admits at least one nontrivial 
nonnegative solution. 

This result will be obtained by a sequence of lemmas. We 
equip 1, ( )p NW R with the norm  

  N

p p

R
u u dx

                           (4) 

And we look for a solution as a minimize of the associated 
functional constrained on the Nehari manifold. So we define 
the functional 1,: ( ) p NI W R R as 

1 1
( )      N N N

p q r

R R R
I u u dx u dx u dx

p q r



       (5) 

And the Nehari Manifold 

 1, 0, ( ) 0pu W u I u u   

 1, 0,
p q rp

q r
u W u u u u      

If u  , then 
1 1

( ) ( ) 0  p
I u u

p r
. 

Lemma 3.2 [13]  The Nehari manifold is not empty. 

Define inf ( )



u

m I u


and try to show that m is attained by 

some u  . 

Lemma 3.3 There results 0m . 

Proof If 0 , and u  , then 

( )   p q r q r

q r
u u u C u u

 

namely1 ( )
  q p r p

C u u . 

If 1u this implies 1 2
 r p

C u . So that for 

all u  ,
1

min 1, (2 )



    
  

r pu C . Therefore   

1
1 1 1 1

( ) ( ) ( ) min 1, (2 )



       
  

p r pI u u C
p r p r

.         (6) 

Lemma 3.4 There exists u  such that ( ) I u m . 

Proof First show that a minimizing sequence for 
m in  rW . To this aim, let  k k

v  be a minimizing 

sequence. As usual we can assume 0kv . Let * 
kk rw v W be 

the non negative radial function given by Lemma 2.1. We 
have 
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*        N N N Nk k k k

p p q rp

k R R R R
w v dx v dx v dx v dx

* *      N N N Nk k k k

q r q r

R R R R
v dx v dx w dx w dx   

Hence if we set 

( ) ( )   p q rq q r
k k k k kq r

t I tw tw t w t w t w   

We have (1) 0 , while ( ) 0t for t  positive and small. 

Therefore there exist (0,1]kt such that ( ) 0kt , that is 

k kt w  . We obtain  

1 1 1 1
( ) ( ) ( )

k k

p qp q
k k k k q

m I t w t w t w
p r r q

    

1 1 1 1
( ) ( )

p q

k k q
w w

p r r q
   

1 1 1 1
( ) ( ) ( )    p q

k k kq
v v I v

p r r q
 

This implies that  k k k
t w is a minimizing sequence 

for m and k k rt w W , as we had claimed. In the sequel we 

set k k ku t w . Of course 0ku and we can assume that up to 

subsequence, ku u in 1, ( )p NW R . By Lemma 2.3 we 

obtain ku u in ( )q NL R and in ( )r NL R , and again up to 

subsequences , ku u almost everywhere, so 

that 0 . .u a e and  ru W . Next prove that the weak limit u  

belongs to and ( ) I u m . Let us first check that u  . 
We have 

0    q r

p q r

k k kC u u u
                        (7) 

And passing to the limit, 0   q r

q r
C u u ; this 

implies 0u and still from (7)  q r

p q r
u u u .If 

 q r

p q r
u u u , then u  . So arguing by contradiction, 

assume that  q r

p q r
u u u . Defining as above, for 0t , 

( ) ( )   p q rp q r

q r
t I tu tu t u t u t u  .              (8) 

From the above ( ) 0t for small 0t while (1) 0 . So 

there is (0,1)t such that tu  .Hence, 

1 1 1 1
0 ( ) ( ) ( )

p q

q
m I tu tu tu

p r r q
     

1 1 1 1
( ) ( )

p qp q

q
t u t u

p r r q
   

1 1 1 1
( ) ( )

p q

q
u u

p r r q
   

1 1 1 1
liminf ( ) lim( )

p q

k qk k
u u

p r r q
   

1 1 1 1
liminf ( ) ( )

p q

k qk
u u

p r r q

 
    

 
liminf ( )k

k
I u m   

This contradiction proves that  q r

p q r
u u u , and 

therefore u  . By the weak lower semicontinuity of the 
norm it is straightforward to deduce 
that ( ) liminf ( ) kk

I u I u m , and the lemma is proved. 

Lemma 3.5 The minimum u is a crucial point 
for I in 1, ( )p NW R . 

Proof Fix 1, ( ) p Nv W R and 0 such that 0 u sv for 

all ( , ) s   . Define a function : ( , )    (0, )  R by 

( , ) ( ( )) ( )s t I t u sv t u sv   
p q rp q r

q r
t u sv t u sv t u sv                     (9) 

Then (0,1)   p q r

q r
u u u  =0 and 

(0,1)


  


p q r

q r
p u q u r u

t

  . 

So, by the Implicit Function Theorem there exists 
a 1C function 0 0: ( , ) t R  such 

that (0) 1t and ( , ( )) 0s t s for all 0 0( , ) s   . 

Defining ( ) ( ( )( )) s I t s u sv , the function  is differentiable 
and has a minimum point at 0s ; therefore 

0 (0) ( (0) )( (0) (0) ) ( )      I t u t u t v I u v            (10) 

Since this holds for all 1, ( ) p Nv W R , then ( ) 0 I u v .  
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