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Abstract—The aim of this paper is to improve stability condition 
for neutral systems with mixed time-delay. By introducing a 
novel integral inequality based on the optimization theory, and 
constructing the novel Lyapunov functionals, an improved delay-
dependent stability criterion is established. It is shown that the 
integral inequality obtained in this paper can be utilized to get 
less conservative delay-dependent stability condition for neutral 
systems. A numerical example is provided to demonstrate the 
theoretical result. 
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I. INTRODUCTION 

It is well known that neutral systems are frequently 
encountered in various engineering systems, including 
population, ecology, distributed networks containing lossless 
transmission lines, heat exchangers, and repetitive control. In 
the past two decades, a great deal of attention have been drawn 
to the delay-dependent stability problem of neutral dynamical 
systems (see, e.g., [1]-[31]). Various important methods have 
been introduced, such as model transformation approach[4], 
delay partitioning technique[11], discretized Lyapunov 
functional method[12], free-weighting matrix approach[5], and 
descriptor system approach[17]. Among those techniques, the 
Jensen’s like inequality has played an important role to obtain 
delay-dependent stability conditions [21].  

However, Jensen’s like inequality inevitably introduces an 
undesirable conservatism, and improving it is always an open 
problem [25]. Fortunately, it has been improved in [24]-[26] 
which dealt with single integral terms. Recently, a new 
multiple integral inequality was introduced following a similar 
line as in proof of Jensen inequality in [20], and a novel delay-
dependent stability criterion was established, which has been 
unfortunately observed that the computational burden is 
slightly heavy. Actually, [19] observed that the upper bounds 
of double integral terms should also be estimated if triple 
integral terms are introduced in the Lyapunov-Krasovskii 
functional to obtain less conservative conditions. Based on the 
Wirtinger inequality, [23] improved the double Jensen’s like 
double integral, and a double integral form of the Wirtinger-
based integral was introduced. However, they didn’t consider 
the derivative of the integrand directly. We may get another 
double integral inequality if we consider this case of deriva- 
tive. Therefore, if one can introduce a less conservative double 
integral Jensen’s like inequality which contains its derivative, 

the delay-dependent stability results would be improved 
greatly, which may reduce the complexity of calculation. 

In this paper, we will introduce a new integral inequality 
based on the optimization theory and construction techniques, 
and then investigate the conventional neutral systems to 
illustrate the advantages of applying this inequality to obtain 
delay-dependent stability criterion. The rest of the paper is 
organized as follows. In Section II, we formulate the problem 
and the novel inequality is introduced, which is proved to be 
less conservative than the double integral Jensen’s like 
inequality. In Section III, as an application of the introduced 
inequality, the stability condition for neutral systems with 
mixed delay is presented. The sufficient condition is formed in 
terms of LMIs, which can be easily calculated by Matlab 
control toolbox [32]. Many cases are compared in the tables 
based on the conventional numerical example, which is used 
to show the validity and less conservativeness of our approach 
in Section IV. The paper is concluded by Section V. The 
acknowledge is presented in Section VI  

II. PROBLEM STATEMENT AND PRELIMINARIES 

In this paper, we will improve the stability condition for the 
following neutral system with mixed time-delays: 
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where   nx t  ¡ is the state vector, ,h are time-

delays,    is the initial condition function. , ,A B C  are 

known matrices. In this paper, we always assume that the 
spectral radius of C less than 1. 

As is well known, inequalities and Lyapunov functionals 
are both important to improve the delay-dependent stability 
condition for neutral systems with mixed time-delays. 
Accordingly, we will first introduce a novle double integral 

inequality to deal with the    
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derivative of constructed Lyapunov functionals. 

Lemma2.1 For a give matrix 0,R  the following 
inequality holds for all continuously differentiable function 
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Proof. For any continuous function    ,w t t h t   and which 

admits a continuous derivative, define the function z by 

     
2 3

42
,

g s
z s w s A B

h h
   for  , ,s t h t   

where 

    ,
t

t h
A hw t w s ds


      3 3 ,g s t h s  

     
06

2 .
t t

t h h t
B w s ds hw t w s dsd

h 


  
     

The computation of     
0 t

h t
z s Rz s dsd




   leads to 


   

0 t

h t
z s Rz s dsd




 
  

   
0 t

h t
w s Rw s dsd




    
0

2

4 t

h t
w s dsd RA

h 


 
   



0

4

4 t

h t
dsd A RA

h 
 

 
    

0

5

16 t

h t

g s dsd A RB
h 

 

 

  


 
0 2

6

16 t

h t
g s dsd B RB

h 
 

 
  



   
0

3

8 t

h t
g s w s dsd RB

h 


 
   

Simple calculation ensure that 
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More specifically, one can see 


     0

2

2
2

t

h t
w s Rw s dsd A RA B RB

h
  

 
  



or equivalently 

    
0

6
t

h t
w s Rw s dsd


 

 
    

with  and   are defined in Lemma 2.1. This completes the 
proof. 

Remark 2.1 It is worth mentioning that the choice of 
function  z s is essential in the proof of Lemma 2.1. On the 

one hand, the function  g s  should be constructed to mark 
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in a standard quadratic form. Therefore, according to the 
computation for the integrations, we choose 
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Remark 2.2 The inequality in (2) not only contains the 
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    Clearly, inequality (2) of 

Lemma 2.1 is less conservative than the conventional Jensen’s 
inequality in [28]. 

III. MAIN RESULT 

In this section, by constructing a novel Lyapunov functional, 
and using many inequalities which contain the above 
introduced inequality, we will give much better delay-
dependent stability condition. 

Theorem 3.1 The system (1) is asymptotically stable if there 
exist positive definite matrices 1 2 1 2 1 2, , , , , , ,P W W Q Q R R any 

symmetric matrices   2 2, , 1,2,3,4 ,ij ijY Z i j   with ppropriate 

dimensions satisfying the following linear matrix inequalities 

 6 6 0,  

 8 8 0,   

where 
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Proof. Construct a Lyapunov functional candidate as 
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For the sake of convenience, we set 
 8 1, ,8n n

ie i  are elementary matrices, for example  
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First, with the inequality (8) of Lemma 5.1 in [29] and 
Lemma 2.1, the Lyapunov functionals 2V and 3V can be scaled 
as 
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On the other hand, 1V and 5V  can be presented as 

 1 1 1{ } ,V e Pe     

2 2 2 2
5 1 2 7 8 1 2 7 8{V e e e h e Z e e e h e  

                 

 1 2 5 6 1 2 5 6 }e e e he Y e e e he  
               

From (10) to (14), we can get that 
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According to the inequality (7), the functional (9) is 
positive definite. Then, the time derivative of  V t  along the 

trajectories of equation (1) can be firstly computed as follows: 
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By using the Lemma 2.1, one can see that 
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From (16) to (21), one can see that 

 0.V    

Obviously, the inequality (22) holds if the condition (8) 
from Theorem 3.1. Following the theory in [30], the system (1) 
is asymptotically stable. 

Remark 3.1 In the proof of this theorem, the functional 
V is general for considering much more information about the 
state vector. In particular, 5V  is very important to improve the 
delay-dependent stability condition. If one attempt to delete 
 x t  from 1G or 2G , the maximum of time-delay may less 

than those of original 5V . It is very important to use a new 
class of inequalities for improving delay-dependent stability 
condition. In short, the delay-dependent stability condition 
would be less conservative, which is shown in next section. 

IV. EXAMPLE  

In this section, we will show the superiority of our approach 
in the above section according to the conventional systems. 

Example 1. Consider the system (1) with the state matrices 
are listed as the following: 

0.9 0.2
,

0.1 0.9
A

 
   


1.1 0.2

,
0.1 1.1

B
  

    


0.2 0
,

0.2 0.1
C

 
   



With different cases, we can obtain different maximum time 
delay h as listed in Table 1 and Table 2, compared with some 
existing references. 

The first case is ,h   the maximum of h for different 
 compared to the existing results are listed in Table 1. 
Clearly, the maximum of h using the Theorem 3.1 is very 
close to analytical bounds, which shows our approach is less 
conservative than the existing results. It is also shows that we 
could also obtain good condition without discrete Lyapunov 
functional approach. 

The second case is ,h   the maximum of  h compared 
to the existing results are listed in Table 2. Although our result 
is little less than that in [12], our condition is the best result 
except the condition obtain by using the approach in [12]. 

Furthermore, our approach may bring simple computation 
than that in [12]. Furthermore, using our approach may be 
more efficient to deal with neutral systems with mixed time-
varying delay. 

In a word, it is observed that our method presented in this 
paper is less conservative than most of the existing results. 

TABLE I. THE MAXIMUM OF h  FOR DIFFERENT   
References 0.1   0.5   1 

[5] 1.7100 1.6718 1.6543

[6] 1.7844 1.7495 1.7201

[7] 1.8307 1.7755 1.7213

[12] 2.1229 2.1229 2.1229

[13] 2.2951 2.3471 2.3752

Theorem 3.1 2.2959 2.3488 2.3769

Analytical 
bounds 

2.2963 2.3491 2.3775
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TABLE II. THE MAXIMUM OF h  AS h   

References 0.1   

[21] 1.3718 

[5] 1.6527 

[14] 1.7191 

[15] 1.7220 

[6] 1.7844 

[16] 1.7856 

[7] 1.8307 

[12] 2.2254 

Theorem 3.1 2.2250 

Analytical bounds 2.2255 

V. CONCLUSION 

In this paper, an improved integral inequality has been  
introduced, as applications of this inequality, the delay-
dependent stability problems for neutral systems have been 
investigated. Based on a new constructed Lyapunov Krasovskii 
functional, and combined with the new integral inequalities, a 
new stability criterion has been obtained for neutral systems 
with mixed time-delay. Finally, one example has shown the 
effectiveness and less conservativeness of the condition 
presented in this paper. 
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