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Abstract. Wind power prediction is important for the power system with plenty of wind power. 
This paper studies the method combined with empirical mode decomposition and extreme learning 
machine for short-term wind power prediction. The empirical mode decomposition method is 
utilized to decompose the signal of wind power into sequences with different characteristic scale. 
The extreme learning machine method is used to model and predict each sequence. Eventually, the 
prediction results of each sequence are added to obtain the final wind-power prediction results. The 
simulation result shows that the proposed method in this study improves the prediction accuracy of 
wind power prediction. 

Introduction 
Wind-energy generation is a clean and renewable energy. Given significant advantages of 

wind-energy generation, more and more attention has been drawn around the world [1]. 
Wind-energy generation is inherently intermittent and random, which leads to strong fluctuation of 
wind-energy generation. Therefore, large-scale wind-power networks will inevitably bring the 
difficulty of controlling the power grid and enormous challenges of safe and stable operation [2]. 
Accurate prediction of wind-energy generation will enable power system dispatching department to 
make timely adjustments to scheduling based on wind power changes, which can effectively reduce 
the adverse effects of wind power fluctuations on the grid, ensure the quality of the grid, 
significantly reduce the grid spinning reserve capacity, and effectively reduce the cost of power 
system operation[3]. 

Nowadays, there are vast numbers of domestic and foreign scholars working on wind power 
prediction. Traditional wind power prediction methods include regression analysis [4], time series 
[5], Kalman filtering method [6] etc. But the randomness and nonlinear of wind power constrains 
the application of traditional prediction methods. Currently, artificial neural networks (ANN) [7] 
and support vector machine (SVM) [8] and other intelligent algorithms are widely used in 
short-term wind power prediction. Extreme Learning Machine (ELM) is a new feed-forward neural 
network method [9] proposed by Hang et al 2006, which has good training speed and generalization 
ability, and so on. ELM overcomes the disadvantages of traditional neural networks. ELM is widely 
applied in classification and regression [9], the time series prediction [10], wind power interval 
prediction [11], economic dispatch [12] and so on. 

This paper presents a short-term wind power prediction model based on EMD and nuclear 
extreme learning machine. For non-stationary time series of wind power, first of all, time series of 
wind power will be broken down into a series of data sequences with different characteristics scales 
using empirical mode decomposition (EMD); then ELM models each data series of IMF and 
predicts each data series; eventually predictions for each data series are added to get the final value 
of original wind power prediction. The simulation based on the data of a real wind farm show that 
the proposed short-term wind power prediction models predict faster with higher accuracy and good 

5th International Conference on Environment, Materials, Chemistry and Power Electronics (EMCPE 2016) 

© 2016. The authors - Published by Atlantis Press 872



 

generalization performance. 

Empirical Mode Decomposition 
EMD is an adaptive signal decomposition method, which is widely used to analyze nonlinear and 

non-stationary signals. In this study, EMD will be applied to analyze time series of wind power. 
EMD is a smooth signal processing, which will decompose the fluctuation at different scales and 
trends present in the signal under stepwise, producing a series of data sequences with different 
characteristics scales called intrinsic mode function (IMF). The decomposed IMF components 
comprise local characteristics of different time scales of the original signal. The procedure of EMD 
decomposition in wind power time series is shown as follows: 

(1) Make sure all maxima and minima of signals ( )x t , forming the upper envelope 1( )e t and the 
lower envelope 2 ( )e t to calculate the average of the upper and lower envelope m : 

1 2
1 ( ( ) ( ))
2

m e t e t= +                                                            (1) 

(2) The difference of data ( )x t and the mean value of upper and lower envelope m is expressed as 
follows 

1 ( )h x t m= −                                                                  (2) 

1h is seen as the new ( )x t . Repeat the above step, until ih satisfies the IMF conditions. The first 
component of IMF chosen from the original wind power series is denoted as 1c , 1 ic h= ; 

(3) To obtain the remaining components, separate 1c from ( )x t : 

1 1( )r x t c= −                                                                  (3) 

1r  is regarded as the new signal ( )x t . Repeat the above step. Obtain the remaining components 2c , 

3c …,sequentially, until the n-order remaining component becomes monotone function. Then do not 
decompose IMF components. So 

1
( ) ( ) ( )

n

i n
i

x t c t r t
=

= +∑                                                           (4) 

Extreme Learning Machine 
Extreme learning machine is a new type of feedforward neural networks. The weights connecting 

the hidden layer and the input layer and the thresholds of hidden layer neurons are randomly given 
and kept the same in the training process in this method, then the output weights is calculated by 
regularization principle, the neural network is still able to approximate any continuous system. 
For N arbitrary distinct samples 1{( , )}N

i i ix t = , where 1 2[ , , , ] n
i i i inx x x x RΤ= ∈ is input data and 

1 2[ , , , ] m
i i i imt t t t RΤ= ∈ is target output value, standard single hidden layer feedforward networks 

with K hidden nodes and activation function ( )g x are mathematically modeled as 

1 1
( ) ( ), 1, ,    

K K

j i i j i i j i
i i

o g x g x b j Nb b ω
= =

= = ⋅ + =∑ ∑                                     (5) 

where 1 2[ , , , ]i i i inω ω ω ω Τ=   is the weight vector connecting the i th hidden node and the input 
nodes, 1 2[ , , , ]i i i imββββ    Τ=   is the weight vector connecting the i th hidden node and the output 
nodes, ib  is the threshold of the i th hidden node, jo is the output of network, ( )i j ig x bω ⋅ +  is the 
activation function of the i th hidden node, generally the Sigmoid function. 

When training begins, iω  and ib  are randomly initialized and kept the same in the training 
process, only the output weights iβ  need to be determined through training. That standard single 
hidden layer feedforward networks with K  hidden nodes with activation function ( )g x  can 
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approximate these N samples with zero error means that
1

0
N

i i
i

o t
=

− =∑ , i.e., there exist iβ , iω  and 

ib  such that 

1
   ( )= , 1, ,

K

i i j i j
i

g x b t j Nb ω
=

⋅ + =∑                                                 (6) 

The above N equations can be written compactly as 
H Tβ =                                                                     (7) 

Where 

1 1 1 1
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             (8) 

H is called the hidden layer output matrix of the neural network;T is desired output vector. 
Traditionally, train a single hidden layer feedforward networks is simply equivalent to find a 

least-squares solution β̂ of the linear system H Tβ = : 

( ) ( )1 1 1 1
ˆ, , , , , min , , , , ,K K K KH b b T H b b T

b
ω ω b ω ω b− = −                        (9) 

where †ˆ H Tβ = is the smallest norm least-squares solution of the linear system H Tβ = ; †H is the 
Moore–Penrose generalized inverse of the hidden layer output matrix H .The training process of 
extreme learning machine is a simple linear regression process. It effectively overcome the problem 
of traditional neural networks which will easily fall into local minimums, and the training speed and 
generalization ability are also greatly improved. 

Wind Power Prediction Model based on EMD-ELM 

Time series of wind power has obvious nonlinearity, non-stationary and randomness, so larger 
error will generate when using traditional prediction methods. Given EMD technology has a good 
non-stationary capability for data processing, this paper presents a combination method for 
short-term wind power prediction based on EMD-ELM. Prediction scheme is shown in Figure 1. 

 
Fig.1. Flowchart of EMD-ELM prediction 

(1) Utilize EMD method to decompose original wind power time series to obtain each 
component ( )ic t and the remaining components ( )nr t of IMF. 

(2) ELM prediction models are established for each component ( )ic t and the remaining 
components ( )nr t of IMF. Wind speed, the sine and cosine value of wind direction are regarded as 
input for wind prediction model to obtain the predicted value of each component sequence IMF. 

(3) The predictive value of each IMF component is superimposed to obtain a final wind power 
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prediction value. 
(4) Compare with the actual data of wind power. Obtain prediction error indicators and error 

analysis. 

Example analysis 
To verify the feasibility of wind power combination prediction model presented in this paper, 

wind power data for a wind farm on October 2014 is used for simulation. The input sample is 
sampling a point every 15 minutes. Take seven days’ data, i.e., 672 sampling points are as the 
experimental samples. Among them, the former 480 sampling points are for the model input sample 
and the latter 192 sampling points are for the test samples. Original wind power time series are 
shown in Figure 2. 
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Fig.2. Original wind power series 

First, the sample data (including the original wind power, wind speed, wind direction) is 
normalized, i.e. the original data is linearly transformed into interval [0, 1]. The wind power time 
series EMD are decomposed to six IMF components and a residual component, as shown in Figure. 
3. According to Figure 3, it shows that IMF1 frequently fluctuates and the value change is not great, 
which illustrates that a high frequency portion of the signal power of wind can be seen as a random 
noise. Therefore, IMF1 is not predicted. IMF1 and the rest of prediction values are added directly to 
get the final wind power prediction value; IMF5 and IMF6 denote wind power low-frequency part 
of the signal. The oscillation period is relatively large. The remaining portion Res represents the 
whole trend of wind power original signal. The mean value is closer to the average of the original 
wind power signal. Based on the above analysis, establish ELM prediction model for each of the 
IMF (except IMF1) component signal and the residual signal Res. Then predict each IMF (except 
IMF1). Finally, each IMF (except IMF1) component, the predictive value of the residual signal Res, 
and IMF1 component are superimposed to give the final result of wind power prediction. 
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Fig.3. EMD results of wind power data 

In this paper, predict the wind power 16 steps in advance. Because the sampling frequency is 
sampled once every 15min, this result is the prediction of wind power with 4 hours in advance. 
Because the test sampling points is 192 points, 12 times for multi-step prediction are needed, i.e., 12 
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times wind power prediction with 4 hours in advance. The detailed content is to complete a 16-step 
prediction, then the tested wind power sequence is put into the prediction model for training. 
Subsequently continue to the next 16-step prediction. Repeat 12 times to obtain the final wind 
power forecast results. To verify the effectiveness of the proposed method, establish EMD-ELM, 
ELM and EMD-BP prediction model of the input data, respectively. Compare the results with the 
actual wind power data. The prediction results are shown in Figure 4. 
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Fig.4. Actual value of wind power and prediction results ahead 4 hours of each prediction model 

Select the root mean square error nrmseE , mean absolute error nmaeE , and mean percentage error 

mapeE to quantitatively evaluate the accuracy of the model prediction results by the following: 

( )2

1

1 ˆ
N

nrmse i i
i

E x x
N =

= −∑                                                       (10) 

1

1 ˆ
N

nmae i i
i

E x x
N =

= −∑                                                           (11) 

1

ˆ1 100%
N

i i
mape

i i

x xE
N x=

−
= ×∑                                                    (12) 

where ix is actual value; ˆix is model prediction value; N is the number of the test sample. Table 1 
lists performance of various errors. 

TABLE 1. Error Comparison of Different Wind Power Prediction Methods 

Prediction 
methods 

Root mean 
square error  

Mean absolute 
error  

Mean absolute 
percentage error 

/% 
EMD-ELM 11.83 10.09 20.88 

ELM 14.74 11.28 24.98 
EMD-BP 16.12 13.45 27.57 

From Figure 4, we can see EMD-ELM wind power prediction and actual values agree well in 
advance of 2 hours. As shown in Table 1, compared EMD-ELM with direct ELM method, the 
accuracy of prediction is improved, which illustrates that decomposing wind power wind power by 
EMD method can improve prediction accuracy to some extent. What’s more, compared the error 
results of EMD-ELM method and EMD-BP method, we can see the prediction accuracy of 
EMD-ELM is improved, which shows that the proposed prediction method can better identify 
trends and patterns inherent in the data and the prediction curve can follow the actual power curve 
to achieve a high accuracy of short-term wind power prediction. 

Conclusion 
Due to non-stationary and randomness in wind power series, empirical mode decomposition 
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combined with extreme learning machine is utilized for short-term wind power prediction. EMD 
method can gradually decompose real trend or fluctuation amount with the same scale in wind 
power time series, which can better reduce wind power signal in unsteady behavior. Extreme 
learning machine can better map out the non-linear relationship between the signal and reduce the 
influence of nonlinear wind power data for wind power prediction results. The simulation results 
show that short-term wind power prediction method based on empirical mode decomposition and 
extreme learning machine can follow the change rule of wind power and effectively improve the 
prediction accuracy of short-term wind power. 
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