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Abstract. Traditional blind source separation (BSS) approach tries to recover all source signals from 
observed mixtures simultaneously. However, the recovered signals suffer from an inherent ambiguity 
on dilation and permutation. A flexible signal extraction process is deduced on the basis of kurtosis. 
Correspondingly, someone can extract only a few source signals or separate all source signals in a 
prescribed order. Therefore, the proposed method can provide more freedom in signal separation. 

Introduction 

Blind source separation (BSS) is a powerful technique to recover the original sources from their 
mixtures without knowledge of the mixing process [1-3]. Indeed, blind is not complete since someone 
must use certain statistical properties of original sources. In last decades, BSS technique has been 
studied extensively in the domain of biomedical signal processing, speech and image processing, data 
mining, and so on [4,5]. The traditional BSS technique aims to recover all source signals 
simultaneously, but the recovered signals suffer from an inherent ambiguity on dilation and 
permutation. In most cases, the number of sources is large while only one or a few are desired. For 
example, in ECG or EEG we can obtain more than 64 sensor signals but only several signals are 
interested, and the rest are regarded as interfering noise. In such cases, traditional BSS technique is 
very computationally demanding. We start to overcome the inherent shortcomings inherent in 
traditional BSS methods. 

 According to the central limit theorem, the distribution of a sum of independent random variables 
tends to a Gaussian distribution [6]. Therefore, measurements of non-Gaussianity are well established 
and understood to recover blind source signal. As a practical measure of non-Gaussianity, kurtosis 
generally represents the preferred technique for blind source extraction [7-9]. In this paper, we firstly 
calculate the performance of kurtosis. Then a cost function is deduced on the basis of normalized 
kurtosis. Correspondingly, a flexible learning algorithm is derived based on the standard gradient 
descent rule. By the proposed method, someone can extract a desired source signal owning valuable 
information. Furthermore, he can separate all source signals one by one in a prescribed order, which 
is also important in practice. Computer simulations demonstrate its validity and usefulness. 

Proposed Algorithm 

The mixed sensor signals 1( ) [ ( ), , ( )]T
nx k x k x k=   is given by the following matrix equation 

x(k)=As(k),                                                                    (1)  
where A is an n×n unknown mixing matrix, k is the discrete time index, and 1( ) [ ( ), , ( )]T

ns k s k s k=   
is a vector of unknown zero-mean and unit-variant original sources. Here only the vectors x(k) can be 
observed and everything else is unknown. The original sources are assumed to be mutually 
independent with non-Gaussian and nonlinear autocorrelation. 

In model (1), only the vectors x(k) can be observed and everything else is unknown. The basic 
problem of BSS is to estimate both the mixing matrix A and the source signals s(k) using observations 
of the mixtures x(k) and some statistical properties of original sources. Traditional BSS technique 
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aims to recover all source signals from their mixture simultaneously [2,6]. As the mixture of 
independent Gaussian sources mixed by an orthogonal mixing matrix remains independent, the BSS 
techniques are only applicable to non-Gaussian sources, or when at most only one source is 
Gaussian[8,9]. Under this condition, the extraction of one original source signal is equivalent to 
extracting an independent component from the mixtures. Assume that someone wants to extract a 
desired source signal y(k), an efficient technique is to introduce an iterative process to find a weight 
vector w so that ( ) ( ) ( )T Ty k w x k g s k= =  is a good approximation to the desired source signal [4,5]. 
Here T Tg w A= is the global demixing vector. 

Non-Gaussianity is actually of paramount importance in BSS estimation [1,4]. In recent decades, 
solutions based on measurements of non-Gaussianity are well established and understood for BSS 
problem. To use non-Gaussianity for signal separation, one must have a quantitative measure about 
non-Gaussianity of a random variable. As a first practical measure of non-Gaussianity, Kurtosis is the 
name given to the fourth-order cumulant of a random variable. Kurtosis is defined in the zero-mean 
case by the equation 

4 2 2( ) { } 3( { })kt y E y E y= −                                                  (2) 
where {}E ⋅  denotes the statistical expectation operator.  

Alternatively, the normalized kurtosis 
4

4 2 2

{ }( ) 3
[ { }]

E yk y
E y

= −                                                                (3) 

can be used. For whitened data 2{ } 1E x = , both the versions of kurtosis reduces to  
4

4( ) ( ) { } 3kt y k y E y= = −  .                                                     (4) 
Therefore, for whitened signal, the fourth moment 4{ }E x   can be chosen instead of kurtosis for 

characterizing the distribution of y. Kurtosis has many useful property. If x and y are two statistically 
independent random variables, one can deduce that 

( ) ( ) ( )kt x y kt x kt y+ = +   .                                                        (5) 
For any scalar parameter  δ , 

4( ) ( )kt y kt yδ δ= .                                                         (6) 
Therefore, kurtosis is not linear with respect to its argument. Furthermore, kurtosis is the simplest 

statistical quantity for indicating the non-Gaussianity of a random variable. If x has a Gaussian 
distribution, its kurtosis is zero. This is the sense in which kurtosis is “normalized” when compared to 
the fourth moment, which is not zero for Gaussian variables. Normalized kurtosis owns the advantage 
that we do not need to perform the otherwise required pre-whitening and weight normalization 
operations. Therefore, we adopted the normalized kurtosis to represent the stochastic properties of the 
source signals. A cost function is formulated on the basis of normalized kurtosis as follows: 

minimize  4
1( ) ( )
4

J w k y= −                                                (7) 

subject to the constraint 1w =    
To minimize the absolute normalized value of kurtosis, we start from certain vector w, compute 

the direction in which the absolute value of the kurtosis of y=wTx is growing most strongly, on the 
basis of the available sample (1), , ( )x x T   of mixture vector x, and then move the vector w in that 
direction. Applying the standard gradient descent approach to (7), we deduce the learning rule: 

 4( 1) ( ) sgn( ( )) [ ( )] ( )w t w t k t f y t x tµ+ = + ⋅                                             (8) 
( 1) ( 1) / ( 1)w t w t w t+ = + +                                               (9) 

where µ   is the step size and the nonlinear function [ ( )]f y t   is deduced by 
2 34 4
2

2

( ) ( )[ ( )] ( ) ( )
( ) ( )

k y m tf y t m y t y t
y m t

∂
= = −

∂
 .                                             (10) 
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Here, ( ) ( 2, 4)pm t p =   is the pth moment. 
Denote that s(k) is extracted, where k indicates the total number of source signals being extracted 

so far. We exploit the knowledge of s(k) to generate the new input vector x(k) which will not include 
the already extracted signals. We conduct above rule by the following linear transformation: 

( ) ( ) ( ) ( ) ( )T Tx k x k w x k x k w As k= − = −  .                                        (11) 
After the deflation process shown in (11),  the extracted signal can be eliminated from its mixture. 

The remained mixture then can undergo another separation process so as to recover the next source 
signal. In other words, the original sources can be recovered from their mixture one by one. 

Experimental Results  
We used the ABio7 dataset proposed by Barros [9], a benchmark containing a set of typical 
biomedical signals. Each signal had 5000 samples with zero means and unit variances. Due to space 
constraints, we selected three signals, denoted by s1, s2 and s3 in Fig.1. Signal s1 is an ECG and the 
other two are common artifacts frequently observed while measuring the ECG: electrode and 
respiratory artifacts. A 3×3 mixing matrix A was randomly generated whose rows were A1=[0.79 
-0.39 0.67], A2=[0.68 0.39 0.51] and A3=[-0.51 0.79 0.77]. Three source signals were mixed with the 
matrix A. The mixed results were shown in Fig.2. We ran the proposed algorithm in this paper and the 
separation results were depicted in Fig.3. 
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Fig.1 Original biomedical signals 
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Fig.2 Signals mixed by random matrix 
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Fig.3 Signals separated by the proposed algorithm 
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We also ran typical BSS methods: BSBSE in [2] and EVBSE in [5]. For simplicity, we call the 
proposed algorithm in this paper as NEWBSE. To further calculate the accuracy of extraction, we 
adopted the index of signal-to-noise ratio (SNR) in dB given by SNR=10log10(S2/MSE), where S2 
denotes the variance of the source and MSE denotes the mean square error between the original signal 
and recovered signal. Obviously, the higher SNR is, the better the performance is. To exactly 
compare the performance of these algorithms, we repeated these simulations 100 times independently 
so as to get the average and highest SNR. The simulation results are shown in Table 1. The superiority 
of the proposed algorithm is obviously. 

 
Table 1 Comparison of SNRs (dB) by three algorithms 

algorithm BCBSE EVBSE NEWBSE 
average SNR 12.5643 18.5637 21.5674 
highest SNR 14.5436 21.6538 23.5639 

Summary 
To improve signal separation performance and expand application, a flexible algorithm, called 
NEWBSE, has been deduced in this paper. It can efficiently separate signal mixture into their 
underlying components. Preliminary results on biomedical signals have confirmed its reliability. 
Further theoretical endeavors of the proposed method and the improved faster method are subjects for 
future study.  

Acknowledgements 

This work is supported by the National Natural Science Foundation of China (11473019), Natural 
Science Foundation of Shandong (ZR2014AM015). 

References 

[1]  C. J. James and C. W. Hesse, Independent component analysis for biomedical signals, 
Physiological Measurements, vol.26, pp.15-39, 2005. 

[2]  A. K. Barros and A. Cichocki, Extraction of specific signals with temporal structure, Neural 
Computation, vol.13, pp.1995-2003, 2001. 

[3]  E. Santata, J. C. Principe and E.E. Santana, Extraction of signals with specific temporal structure 
using kernel methods, IEEE Transactions on Signal Processing, vol.58, no.10, pp. 5142-5150, 
2010. 

[4]  Y. J. Zhao, B. Q. Liu and S. Wang, A robust extraction algorithm for biomedical signals from 
noisy mixtures, Frontiers of Computer Science in China, vol.5, no.4, pp. 387-394, 2011. 

[5]  Z. L. Zhang and Y. Zhang, Extraction of temporally correlated sources with its application to 
non-invasive fetal electrocardiogram extraction, Neurocomputing, vol.69, pp. 894-899, 2006. 

[6]  W. Lu and J. C. Rajapakse, ICA with reference, Neurocomputing, vol.69, pp. 2244–2257, 2006. 
[7]  Z. L. Zhang, Morphologically constrained ICA for extracting weak temporally correlated signals, 

Neurocomputing, vol.71, pp. 1669-1679, 2008. 
[8]  R. Llinares, J. Igual, A. Salazar and A. Camacho, Semi-blind source extraction of atrial activity 

by combining statistics and spectral features, Digital Signal Processing, vol.21, pp.391-403, 
2011. 

[9]  D. De Moor (Ed.), Daisy: database for identification of systems, 1997, URL: 
http://www.esat.kuleuven.ac.be/sista/daisy. 

672




