
 

 

Spatial Correlation Analytical Method of OD Flow in Freight Transport: a 

Case Study of China 

Wei Weia, Baohua Maob, Shaokuan Chenc, Xinmiao Zhaod and 

 Yangfan Zhoue 

MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing 
Jiaotong University, Beijing 100044, China 

a
w_wenyun@qq.com, 

b
bhmao@bjtu.edu.cn, 

c
shkchen@bjtu.edu.cn, 

d
12125674@bjtu.edu.cn, 

e
13114226@bjtu.edu.cn 

Keyword: Origin-destination flow; Freight Transport; Spatial correlation; Spatial interaction 

Abstract: Commodity and information interaction between regions are becoming more and more 

intense. The data of origin-destination flow (OD flow) is the observation of the interaction between 

paired regions. Each observed value of OD flow is related to an original point and a destination point 

in space, which brings enormous challenge in the establishment of mathematical model. In spatial 

interaction models, it is usually supposed that there is a certain relation (often the linear) between 

regional interaction and special distance, which may result in the inconsistence between data 

characteristics and model hypotheses. Based on the general form of traditional spatial autocorrelation 

indicators, a novel indicator system consisting of global and local indicators of spatial correlation for 

the origin-destination flow (OD flow) is proposed in this paper, and further the corresponding Z tests 

for the significance judgment are also derived under the null hypotheses of spatial uniformity and 

normal distribution. Finally, the feasibility and effectiveness of the proposed methodology are 

demonstrated by case studies of the railway freight exchange flows in Chinese mainland 2004. 

Through the proposed method, nodes in the freight transport network are classified to four types: 

global point, local point, generation point and attraction point. 

Introduction 

With the development of economy and society, commodity and information interaction between 

regions are becoming more and more intense. For the observation data of regional interactions, each 

observation value has a specific origin point and destination point, called origin-destination flow (OD 

flow). OD flow is widely used in the field of economy [1-3], transportation [4-7] and international 

relationship [8-11]. Generally, OD flows depend on not only the location of origin and destination but 

also the regional distances [1, 12-14], which brings additional challenges for mathematical modeling. 
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Fig. 1 The relation of the average inter-city rail freight flow to the spatial distance 

Spatial interaction models assume that using distance as an explanatory variable in the linear 

regression function will eradicate the spatial dependence among the sample of OD flows between 

pairs of regions [15, 16], which has long been challenged [14,17]. For the relation between average 

inter-city rail freight flow and spatial distance in the mainland of China 2004 shown in Fig. 1, it can be 
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seen that the average inter-city rail freight decreases with the special distance and it shows a 

characteristic of non-linear attenuation. 

In spatial autocorrelation theory, exploratory spatial autocorrelation indicators [18-21] such as 

Moran’s I [22-24] and Getis’ G statistics [25-27] are widely used in the recognition of spatial correlation 

and spatial structure in the cross-section data [28,29] and panel data [30,31]. Many researchers [32,33] use 

the exploratory spatial autocorrelation indicators to judge whether spatial correlation exists or not 

before the construction of spatial regressive models. 

However, in the building process of space interaction models, there is a lack of indicators to 

make exploratory analysis of the correlation between regional interaction and spatial distance in OD 

flow data. Constructing spatial interaction models under linear relation hypotheses may encounter the 

problem that the data features do not match to the model hypotheses. Considering this situation, a 

spatial correlation indicator system consisting of global and local indicators is proposed to measure 

the correlation between spatial interaction and regional distance in this study.  

The subsequent sections of this article are organized as follows. A novel spatial correlation 

indicator system is presented in Section 2 to measure the spatial correlation between regional 

interaction and spatial distance in OD flow data. In Section 3, the Z tests are derived for the 

significance judgment of spatial correlation indicators. The feasibility and effectiveness of the 

proposed methodology are demonstrated by the case studies of the railway freight exchange flows in 

Chinese mainland 2004 in Section 4. Finally, we conclude this study with Section 5. 

Spatial correlation indicators for OD flow 

In order to construct the indicator system for the spatial correlation of OD flows, it is necessary to 

establish the null hypotheses that the interactions between different spatial distances are equal and 

follow the same normal distribution, including the following two aspects. 

1) Spatial uniformity hypothesis; 

Spatial uniformity hypothesis means that the total OD flows generated (attracted) by a certain 

region are equally distributed to (from) all the other regions (including this region itself). 

2) Normal distribution hypothesis; 

Under spatial uniformity hypothesis, the OD flow between any pair of regions follows the same 

normal distribution. 

The null hypothesis of spatial uniformity and normal distribution for OD flow are shown in 

Formula (1) and (2). Formula (1) (Formula (2)) indicates that the difference between the actual flow 
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region i  follows normal distribution with expectation of zero and variance of 2 , called the left 

(right) null hypothesis. The constant n  in the equations is the number of regions studied. 
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The general form of the traditional spatial autocorrelation indicators [19, 24] is described in 

Formula (3), where   is the global indicator of spatial autocorrelation and i  is the local; ijw is the 

spatial similarity between region i  and j ; ijc is the property similarity between region i and j . There 

are different calculation ways of the property similarity ijc  for different spatial autocorrelation 
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indicators. For example, if set ix  and jx  are the attribute values of region i  and j , using ij i jc x x  

yields a Moran-like measure, while taking 
2( )ij i jc x x   yields a Geary-like index [24]. 

 ;ij ij i ij ijw c w c      (3) 

The global and local spatial correlation indicators of OD flows under two null hypotheses (the 

left and right) are constructed respectively as Formula (4) and (6), where ijw  is the spatial adjacency 

between region i  and j , and ijr  is the flow from region i  to j . The statistic 1
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used to replace ijc  in the general form of spatial autocorrelation indicators. 
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For all the flow items generated (attracted) by region i , as the sum of the n  statistics 1
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 ) is 0, so the degree of freedom is -1n  for the n  statistics. Therefore, the degree of freedom 

for 2n  statistics of flow items among all studied regions is ( 1)n n  under the left or right null 

hypothesis. So, the estimated values of standard deviation under the two null hypotheses are derived 

with the freedom degree of ( 1)n n  in Formula (5) and (7). 

The global indicators -H left  and -H right  can describe the correlation between regional 

interactions and spatial adjacency of regions under the left and right hypotheses respectively, while 

the local indicators - ih left  and - ih right  describe the local correlation at the specific region i . 

Positive values of spatial correlation indicators mean that regional interactions between spatial 

neighbors tend to be greater than those between regions away from each other, while negative values 

of spatial correlation indicators illustrate that regional interactions between spatial neighbors tend to 

be weak. 

As to the construction of spatial adjacency matrix on the basis of distance, there are the binary 

form, power function and exponential function generally as shown in Formula (8) to (10) respectively. 

Formula (8) is the commonly used binary spatial adjacency matrix; if the distance between region 

i and j  is smaller than a certain threshold value d , the item ijw  in the spatial adjacency matrix takes 
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value of 1; otherwise 0. While in Formula (9) and (10), ijw  is the power or exponential function of the 

distance between region i  and j , where different values of   or   can be adapted to different decay 

rule of spatial correlation with the increase of spatial distance. 

 
1

0

ij

ij

ij

if d d
w

if d d


 


 (8) 

 ij ijw d   (9) 

 ijd

ijw e


  (10) 

Significance test and verification 

In order to judge whether global and local spatial correlations are significant or not, Z statistics are 

constructed based on the statistical properties (expectations and variances) of spatial correlation 

indicators. Then, the Mont Carlo method is utilized in to validate the reasonability of Z test. 

Significance tests 

According to the left and right null hypotheses above, the difference between the OD flow from 

region i  to j  (or j  to i ) and the average generation (or attraction) of i  follows normal distribution; 

with this difference divided by the estimated value of all OD flows’ standard deviation, the quotient 

follows t-distribution with the freedom degree of ( 1)n n . Two t-distributions under the left and right 

null hypotheses are shown in Formula (11) and (12) respectively. 

 

2

2 2

2
1 1 1 1

2 2

1
( ) ( )

~ ( )

1
( ) ( )

ik ik

k k
ij ij

ik ikn n n n
k k

ij ij

i j i j

r r

r r
n n t n n

r r

r r
n n

n n n n



   

 

 

 

 

 

 
 

 (11) 

 

1 1

2

2 21 1

2
1 1 1 1

2 2

1
( ) ( )

~ ( )

1
( ) ( )

n n

ki ki

k k
ji ji

n n

ki kin n n n
k k

ji ji

i j i j

r r

r r
n n t n n

r r

r r
n n

n n n n





 

 

   

 

 

 

 

 

 
 

 (12) 

As shown in Formula (11) and (12), the statistical properties (expectations and variances) of the 

global and local spatial correlation indicators under two null hypotheses (the left and right) can be 

achieved. The expectations and variances of the global and local spatial correlation indicators are 

shown in Formula (13) to (16). Because of the symmetry, the expectations or variances under the left 

and right null hypothesis are equal. Actually, it can be found that the statistical properties of spatial 

correlation indicators are mostly determined by spatial adjacency structure and the number of regions 

studied instead of the values of OD flows. 
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For the significance judgment, Z statistics of the global and local spatial correlation indicators 

under two null hypotheses are shown in Formula (17) and (18) respectively. Generally, when the 

absolute value of Z statistic is more than 1.96, null hypothesis is rejected, which represents that the 

spatial correlation is significant; otherwise there is no significant interactive correlation between 

regions and their adjacency. 

If the value of Z  statistic is bigger than 1.96, the interactions between adjacent regions are 

significantly greater than those between regions away from each other in space. On the other hand, if 

the value of Z  statistic is less than -1.96, the interactions between regions close to each other are less 

than those between regions with large distance significantly. 
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Monte Carlo simulation 

In order to validate the correctness of theoretical statistical properties derived above, the Mont Carlo 

method is utilized to get the simulative values of expectations and variances of spatial correlation 

indicators. As shown in Fig. 2(a), a spatial configuration with 9×9 grid is selected as study object; 

and spatial adjacency rule is defined as Fig. 2(b) where spatial neighbourship exists only between 

boxes with common edge. 

(a) Spatial system of simulation (b) Spatial adjacency rule

Spatial unit Spatial unit studied Spatial neighbour

 

Fig. 2 Spatial configuration and adjacency rule of Mont Carlo simulation 

According to the definition of spatial configuration and adjacency rule in the simulation case, the 

theoretical values of expectations and standard deviations are calculated for -H left  and -H right . 

Then normally distributed numbers are generated automatically to get the simulation values of 

expectations and standard deviations for -H left  and -H right  as well. The theoretical and simulative 

values are presented in Table 1. 

For the three groups of simulative experiments with simulation times of 10000, 20000 and 

50000 in Table 1, the differences between the theoretical and simulative expectation values are all 

less than 310 , and the simulative values of standard deviation differ from the theoretical just 5% at 

most. Therefore, the theoretical estimations of expectations and standard deviations for spatial 
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correlation indicators based on normal distribution hypothesis in this study are effective and 

appropriate. So the significant tests for spatial correlation indictors under the normal distribution 

hypothesis are reasonable. 

Table 1 Theoretical and simulative values of expectation and standard deviation 

Simulation 

times 

Experimental 

index 

Expectation Standard deviation 

Theoretical 

value 

Simulative 

value 

Theoretical 

value 

Simulative 

value 

10000 
H-left 0.000000 -0.000765 0.059963 0.058666 

H-right 0.000000 -0.000783 0.059963 0.058681 

20000 
H-left 0.000000 -0.000546 0.059963 0.057944 

H-right 0.000000 -0.000525 0.059963 0.057937 

50000 
H-left 0.000000 0.000119 0.059963 0.058445 

H-right 0.000000 0.000121 0.059963 0.058433 

Case Study 

To illustrate the applicability and effectiveness of the proposed method, the rail freight flow data of 

278 cities along the railway in mainland China 2004 are selected for case studies. The spatial distance 

between each pairs of the cities is the shortest path length in railroad network calculated by Floyd 

algorithm. The global spatial correlation characteristic and local spatial correlation structure of the 

freight interactions between the studied 278 cities are analyzed with the proposed method in the 

previous sections. 

Global spatial correlation 

Take into account the binary form of spatial adjacency shown in Formula(9), the spatial adjacency 

matrix varies with the upper limit value of distance between spatial neighbors d . Furthermore, the 

spatial adjacency matrix in the form of power function and exponential function of distance in 

Formula (10) and (11) are adopted to study the decay characteristic of the global spatial correlation 

with the increase of regional distance.  
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Fig. 3 The change of Z-statistics for global spatial correlation indicators with distance 

Fig. 3 shows the varying curve of the Z statistics for global spatial correlation indicators -H left  

and -H right  with the upper limit value of spatial neighbors’ distance d . As shown in Fig. 3, with the 

increase of d , the value of Z-statistics for -H left  and -H right  increase sharply at first and gradually 

level out then. Besides, the Z-statistics are greater than 1.96 in the spatial range from 100km to 

3300km, so there are significant freight interactions among the 278 cities in the distance range from 

100 to 3300 km. 

On the other hand, there are four obvious peak points of Z-statistics at 225 km, 525 km, 775 km 

and 1150 km for both -H left  and -H right  in Fig. 3. This illustrates that, 4 obvious modes of the 

freight interactions between the 278 cities exist, including: short distance interactions within 225 km, 
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medium-short distance interactions within 525 km, medium-long distance interactions within 775 km 

and long distance interactions within 1150 km. Among the 4 interaction modes, the short range 

interactions satisfying freight demands between cities within province are the most significant, while 

the long distance interactions are the second most significant and mainly serve the cross-province 

freight demands. The short-medium and long-medium range interactions are compromises between 

the short range and long range interactions, which can satisfy the freight exchange demands within 

and across provinces. 
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(a) Power function form of spatial adjacency 
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(b) Exponential function form of spatial adjacency 

Fig. 4 Decay pattern of spatial correlation with distance 

Fig. 4 shows the decay pattern of spatial correlation with spatial adjacency form of power 

function and exponential function of distance in Formula (10) and (11). In Fig. 4(a), Z-statistics vary 

along with the constant   in power function and reach the maximum values for both -H left  and 

-H right  when   equals 6.40, but there are no pronounced peaks at the maximum value. Fig. 4(b) 

shows the varying process of the Z statistics along with the constant   in exponential function; and 

we can find that, the Z statistic reach the maximum values for both -H left  and -H right  when   

equals 0.025, which are obviously greater than the maximum values of the power function. So it can 

be concluded that, the freight interactions among the 278 cities decay exponentially, and the suitable 

value of   in the exponential decay function is 0.025. 

Local spatial correlation structure 

Under different upper limit value of spatial neighbors’ distance d , the local spatial correlation 

indicators - ih left  and - ih right  for all 278 cities are calculated. If city i  has the maximal value of 

local spatial correlation indicator - ih left ( - ih right ) at a certain value of d , this distance can be 

defined as generation (attraction) influence range of this city. 

After calculation, the average generation and attraction influence range of the studied 278 cities 

are 768.57km and 848.50km respectively. Take the difference between the generation influence range 

and the average of all studied cites as abscissa, and the difference of the attraction influence range to 
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the average of all studied cites as ordinate, every city can be mapped to a point in this two-dimensional 

coordinate plane to get a scatter diagram as Fig. 5. 
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Fig. 5 Scatter diagram of attraction and generation influence range for studied 278 cities 

As shown in Fig. 5, if Z-statistic of the maximal value of local spatial correlation indicator 

- ih left and - ih right  for a city is greater than or equal 1.96, it can be called a significant point; 

otherwise, the city is a random point. The percentage of significant points is just 10%, which are 

mainly distributed around the bisector of the first and third quadrant; while most cities are random 

points, which indicates that there is no significant spatial dependence for freight interactions for most 

cities. In addition, the influence ranges of generation and attraction for the same city also tend to be 

close. 

Furthermore, cites which have significant spatial correlation of freight interactions could be 

classified into 4 classes according to their positions in the scatter diagram of Fig. 5. City in the first 

quadrant is called global point, whose attraction and generation influence ranges are both greater than 

the average level. City in the second quadrant has attractive interactions with cities in a long distance 

range but generative interaction with neighboring cities, so it is called attraction point. The attraction 

and generation influence ranges of cities in the third quadrant are both less than the average level, so it 

exchanges freight with other cities in small distance and can be called local point. City in the fourth 

quadrant generates freight mostly to the cities within a large distance but attracts freight from 

neighboring cities, so it is called generation point. These four categories of cities are mapped in Fig. 6. 
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Fig. 6 Spatial position of the different categories of cities 
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In Fig. 6, cities like Guangzhou, Urumchi and Dalian are global points. These cities are 

important economic centers or port cities with large demand of freight transportation, so they play 

positive and dominant roles in the railway freight system. The local points in Fig. 6 can be divided 

into two groups; big cities like Hangzhou, Shijiazhuang and Guiyang are both important economic 

centers, but their freight interactions with other cities just within the local areas, which means that the 

economic influence effects of these cities are restricted within a small range of space; other local 

points like Tsitsihar, Mutankiang and Ankang are scattered in underdeveloped areas, which mainly 

serve the freight demands between cities in local areas. 

Changchun, Harbin, Shenyang and Tianjin are generation points. The first 3 are located in 

northeast China which produce industrial materials and agricultural products but have few cities with 

strong demands, so these 3 cities generate freight mostly to the cities in long distance but attract 

freight only from neighboring cities. As an important harbor city, a large quantity of products and raw 

materials are transported to Tianjin from the ocean and then transferred to north and northwest China 

by rail, so it is also a generation point. Shanghai, Chongqing, Korla and Huaihua are attraction points. 

Among them, Shanghai is an important metropolis and port city, where not only great amount of 

supplies are demanded but also large quantities of commodities congregate here by rail to ocean 

transportation, so it plays an attractive role in the railway freight system. Chongqing, Huaihua and 

Korla Show features of attraction point because of the strong demands of commodities and 

insufficient supplies from their own and the surrounding areas. 

Conclusions 

Measurement of the spatial correlation for OD flows is necessary to recognize the relationship 

between regional interaction and spatial distance. A novel indicator system consisting of global and 

local indicators of spatial correlation for OD flows was presented in this article firstly; and then the 

relevant Z-statistics for significant test were also developed. As an application, the proposed 

methodology was applied to the spatial dependence analysis of railway freight flows in Chinese 

mainland 2004 to demonstrate the feasibility and effectiveness of the proposed methodology. Some 

conclusions are achieved as follows. 

(1) The expectations and standard deviations of global spatial correlation indicators -H left  and 

-H right  are similar for Mont Carlo simulation and the theoretical value, which indicates that the 

significance tests for spatial correlation indictors under the normal distribution hypothesis are 

reasonable.  

(2) For the studied 278 cities, their freight interactions appear decaying with the increasing of 

distance, and it follows exponential function of distance. There are four typical freight interaction 

modes: the short distance interactions within 225 km, medium-short distance interactions within 525 

km, medium-long distance interactions within 775 km, and long distance interactions within 1150 

km. 

(3) For the local spatial correlation characteristics, cities with significant spatial correlation are 

separated into four types: global point, local point, generation point and attraction point, which can 

reveal the transportation and economy status of cities in freight interaction system and economy.  

So the model proposed in this paper can effectively reveal the global and local spatial correlation 

of interactions among regions. The influence range determination and classification of regions are 

meaningful to recognize points with different characteristics in an interaction system. Further studies 

may be focused on the application of the proposed spatial correlation indicators to spatial interaction 

model improvement. 
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