

A Method of Predicting Software Behavior Risk based on Off-line
Runtime Verification

Lei Hu1, a, Guohua Jiang2, b

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, 210016, China

2 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, 210016, China

aemail: 919074855@163.com, bemail: jianggh@nuaa.edu.cn

Keywords: software behavior risk; runtime verification; prediction

Abstract. The current methods of software behavior risk prediction is mainly through the study of
the operating rules from the data of the other software of the same type, and that leads to differences
between the prediction results and the actual software behavior. Aiming at this problem, this paper
presents a software behavior prediction method, which combines prediction of software behavior
with runtime verification, using Markov Chain and Hidden Markov Model(HMM), to analys the
data from offline runtime verification and predict software behavior. Experiments show that this
method can significantly improve the accuracy of the prediction.

Introduction
Usually, two of the main meanings of software behavior prediction are: the prediction of users’

interaction behavior, for prevention of fraud and other abnormal behavior from user[1], and the
prediction of the quality of software by establishing a software reliability model [2]. The method
mentioned in this paper was neither of them. Here, the software behavior prediction refers to
predicting the future paths of software.

Runtime validation is different from the formal verification of model checking methods.In
runtime verification, according to different ways to work, it can be divided into offline verification
and online verification [3].In online validation, it’s mainly by monitoring the process of real-time
monitoring, to achieve found abnormal operation timely. In offline verification mode, it is mainly
about the analysis of the operation of history, or through the process of differentiation, the
monitoring process is independent of the target system. General online run-time monitoring process
is as fellow: (1). insert the pile in target program, the way of pile inserted has manual and automatic
[4] two kinds, Its aim is pass the target system code execution and variable values such as running
condition to the event recognizer (2).According to the nature of the protocol to be verified, give the
definition of events that need to be concerned. The definition of an event is usually given by human,
because the nature of the protocol to be verified is usually also artificially selected.(3). Target
system operation turn generate execution sequences of events related to property specification
process is called event recognition, through an event recognition and monitor the nature of protocol
verification module to the software running status sequence of analysis and verification results are
given.

The software behavior prediction method proposed in this paper directly uses the the future path
data from target software itself to predict, and can more accurately respond to the operation regular
of the software. By collecting and statisting the data of monitoring software in the real environment,
and build probabilistic models with Markov Chain and HMM[5][6], the method can give a
probabilistic model of the possible paths in the future.

4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016)

© 2016. The authors - Published by Atlantis Press 1180

The collection of software behavior information and the establishment of probability model
To collect the information of software behavior, software information which is collected by users

need to be defined. The definitions is described by PEDL and MEDL language[]. In this way,
instrumentation on the target software will be done.And from that, a state sequence{X(n)} can be
obtained. By calculating the number of state j transfer to state K in the sequence {X (n)} we can get
the transfer frequency Fjk, and then construct the one step transfer matrix of the sequence of {X (n)}
as follows:

11 1

21 2

1

m

m

m mm

F F
F F

F

F F

 
 
 =
 
 
 

 

 

   

 

 (1)

We can get a one-step transtion-probablity matrix Pjk, in which:

1

1

1

, 0,

0, 0,

m
jk

jkm
j

jk
jjk

m

jk
j

F
F

F
P

F

=

=

=


>

= 

 =


∑
∑

∑
 (2)

The above is to establish the Markov chain model for the software behavior probability of the
system which does not contain the hidden state. To the system that includes the hidden states hidden
Markov chain model, the problem that adjusting the model parameters belongs to the problem
learning hidden Markov model, EM[7] algorithm can solve this problem.

Method of software behavior prediction
In the method proposed in this paper, how to forecast software behavior is the main problem, this

section will describe two methods: Basic method of software behavior prediction and Extend
method of software behavior prediction. The first method is aimed at the systems do not include the
hidden state and the second is aimed at the systems contain some hidden state.

Basic method of software behavior prediction
The basic method of software behavior prediction is based on Markov chain to predict the

behavior of the software. Markov chain is used to describe the discrete event with characteristics of
markoff random process. It describes a state sequence, the value of each state depends on the front
of a finite state, if it is only related to the previous state, Is called first-order Markov chain.For
first-order Markov chain, there is the following theorem:

in the sequence, the formation type:
1 1 1 2 2

1

(| , , ,)
(|)

n n n

n n n

P X x X x X x X x
P X x X x

+

+

= = = =
= = =



 (3)
Collection {X1, X2, X3…} is called "state space". The changes of the relationship between state

is represented by the state transition probability matrix.
In this section,Markov chain state spaces is a state collection of software system, state transition

matrix describes the transition relationship between the system states in a system running process.
Collect information about software behaviors to obtain the state transition matrix. Due to the
limitation of the markov chain, it can only calculate the probability of reaching a particular state
through specific steps, and does not directly show the appearance probability of a particular path

1181

sequence. As a result, the problem is converted into obtaining all possible sequences of state within
the next N steps in a certain state, and calculate the appearance possibility of each sequence,then
calculate operational risks in the future.

The following steps are given to calculate the risk of future operations:
(1) Collect information about software running to obtain S={S1,S2,…Sn} (the collection of the

software running states) and P(1) (the state transition matrix in one step).
(2)Set the steps need to predict as N, according to the state transition matrix, if the current state

is Si(1≤i≤n), the states which state transition probability is non-zero are the reachable states, gain
the list of the next reachable states and mark the transition probability.

(3)Build a tree, set Si as the root, set the reachable states of Si as it’s child nodes, then put each
child node as a new parent node, set the reachable states of it as it’s child nodes. Until the depth of
the tree as N+1. Here attached to each child node transition probability are one step transition
probability, is the transition probability from it’s parent node to it.

(4)In the tree, each leaf node in layer N+1 represents a possible software execution path. In all
paths from the root node to leaf node, enumerate all possible path meet the property specification,
according to the transition probability marked in the node, calculate the appearance possibility of
each path, call it PSi. Here is the formula to calcalute PSi:

() () ()()2ln (ln) lnN
j j jP P P F P F −= •  (4)

(5)Sum all possible path which meet the property specification PSi obtain ƩPsi, in current state,
the risk value of software execution in N next steps is 1-Psi.

(6) Repeat the above steps, set the states in state set S as the current states, after calculating the
execution risk within finite steps in the future, stores the result in data structures. When need these
data can be directly query retrieval.

Extend method of software behavior prediction
For most of the software system, if we want to perform runtime validation, we can get system

operation information through some monitoring means, for example program inserting pile. But
some software may exist this situation: During the monitoring, the monitoring information cannot
be directly on behalf of the change of the system state, and it only represents a observable event
occurred in the current state of the system. We can't intuitively observe the change of system state.
As shown in Fig.1, <s1,s2,s3> represents an unobservable system state sequence, and <o1,o2,o3>
represents an observable event sequence. At the runtime validation, we can only obtain an
observable event sequence, the system state transition probability and the happening probability of
an observable event in a certain system state. At this situation, we introduce the HMM to solve the
software behavior prediction problem.

S1 S2 S3

O1 O2 O3

Fig.2. System containing hidden state

HMM is used to describe a Markov process containing implicit unknown parameter. A HMM can
be represented by a quintuple: H=(S,A,V,B,π), and S represents a set of implicit state, and A
represents a matrix of implicit state transition probability, and V represents a set of observable states,
and B represents a matrix of observable state transition probability(also called as Confusion Matrix),
and π represents a probability matrix of initial state. Usually we can use a triple H=(A,B,π), to
concisely represent a Hidden Markov Model. Among them, the elements of S and V can be
enumerated. They can be respectively expressed as S={s1,s2,…sNs}and V={v1,v2,…,vNo}. Ns

1182

represents the number of implicit states, and No represents the number of observable states. A is a
NsNs matrix, and Aij=P(sj|si),1≤i,j≤N. B is a NsNo matrix, and Bij=P(vj|vi),1≤i,j≤No. π is the
probability that the initial state status is si. HMM mainly can be used to solve three categories of
problems : assessment problems, decoding problems and learning problems. But in this section, the
problem to be solved is that under the condition of the current observable state and HMM, calculate
the risk of subsequent possibly happened observable state sequence. This is not the same as the
above three kinds of problems, so this section gives the concrete steps to solve the problem as
follows:

(1)Based on HMM and the state si, build the tree of future state sequence in N step(the same as
the steps (1), (2), (3) in the section).

(2)Repeat the step (1), build the same tree for all states in the set S of implicit states.
(3)If the current observable state is vi, enumerate all the implied states possibly leading to vi.

And list possible paths (from the root node to leaf node) that meeting the property in the trees.
According to the marked transition probability, calculate the happening probability of each path psi.

(4)After getting the corresponding implicit state path sequence, get all the observable state
sequences which may be corresponding with each implicit state sequence. Determine them whether
meet the property and sum the probability Ʃpsi. The risk of software running in N steps is 1-Ʃpsi.

(5)Repeat the above steps, calculate their running risk in future N steps for all the observable
states , and store them in a data structure.

Experiment result
Apply the methods to two software systems, basic method of software behavior prediction for

software A, and extend method of software behavior prediction for software B. Collect their
historical data, and calculate the future operational risk. Run A and B for enough times, get the
frequency of violating the specification. Verify that the calculated run risk is consistent with the
actual results or not. The violation frequency and prediction risk of A and B is shown in Fig.2.

0.00%

10.00%

20.00%

30.00%

test 1 test 2 test 3

Violation frequency Prediction Risk

(a) software A (b)software B
Fig.2.Violation frequency and Prediction Risk

From the data in Fig.2, we can see that the violation frequency and the prediction risk are very
close, which means that the methods in this.paper can accurately predict the risk of software
operation.

Conclusion
Based on the analysis of the mechanical theory as the foundation, designed the soccer robot pick

the ball institutions optimal design process, found aim function, select design variables and the
corresponding optimization algorithm to optimize a complete set of institutions. At last through the
test to get the final performance parameters of the institution. Experiments show that the system has
higher accuracy and stability, the new optimize pick the ball have design basic requirements, and
achieved good ideal control effect.

Based on the On collecting the data of the software behavior, this paper designed methods to
predict the future behavior and risk of the software based on the historical data, and puts forward
the basic method of software behavior prediction and the extend method of software behavior

1183

prediction. Finally, the predicted results are compared with the actual situation in the experiment.
The results show that the method proposed in this paper has high accuracy and can effectively
predict the future operational risk of the software.

Acknowledgement
In this paper, the research was sponsored by Software Testing Center of College of Computer

Science and Technology, Nanjing University of Aeronautics and Astronautics.

References

[1] Wang Q, Yu B, Zhu J. Extract Rules from Software Quality Prediction Model Based on Neural
Network[C]// null. IEEE Computer Society, 2004:191-195.

[2] Lee K C, Ozdemir H T, Yu J. System and method for predicting abnormal behavior: US, US
20100207762 A1[P]. 2010.

[3] Pike L, Goodloe A, Morisset R, et al. Copilot: a hard real-time runtime monitor[C]//Runtime
Verification. Springer Berlin Heidelberg, 2010: 345-359.

[4] Ye hua L I, Nai jie G U, Zhang Y N, et al. Runtime Program Verification Framework Based on
Instrumentation and Boolean Logic[J]. Computer Engineering, 2013, 39(1):29-17.

[5] Keilson J. Markov chain models—rarity and exponentiality [M]. Springer Science & Business
Media, 2012.

[6] Trivedi K S, Vaidyanathan K, Selvamuthu D. Markov chain models and applications [C] //
Elsevier Inc. 2015.

[7] Yildirim S, Singh S S, Doucet A. An online expectation–maximization algorithm for
changepoint models [J]. Journal of Computational and Graphical Statistics, 2013, 22(4): 906-926.

1184

