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Abstract—The boundary element method (BEM) using 

collocation with constant elements has been adopted to 

calculate the insertion loss of a sound barrier in a two-

dimensional model. Analysis has been done on how the 

results obtained with BEM are affected by the numerical 

integration accuracy. First, the precision of all elements in 
matrix which were obtained through integration of 

equations with numerical integration approaches is directly 

influenced by the integration accuracy, which further affects 

the final results. Second, Two numerical integration methods, 

midpoint rectangle rule and composite four-point Gaussian 

quadrature rule, have been compared in this work. The 

number of integration points has relatively little effect on the 

results, and the composite four-point Gaussian rule has a 
higher convergence rate than the midpoint rectangle rule. 

Moreover,a comparison of wedge insertion loss calculated 

with GTD and BEM for different frequencies and different 

BEM element lengths has shown that: for wedge diffraction 

problems, it is necessary to ensure the element length is 

below 1/20 wavelength and consider the impacts of 

characteristic frequencies. 

Keywords-Sound barrier; Diffraction; Boundary Element 
Method;The numerical integration accuracy. 

I.  INTRODUCTION 

The spreading phenomenon of sound waves around 
obstacles is one important form of sound transmission. It is 
common in practical application to figure out the 
diffraction attenuation of sound waves from obstacles 
(such as sound barriers and buildings). After years of 
research, scholars have proposed lots of methods to 
calculate the attenuation of acoustic diffraction by 
obstacles, among which the empirical formula method [1], 
the Biot-Tolstoy method[2], the Hadden-Pierce method 
[3,4] and the geometrical theory of diffraction (GTD)[5,6] 
have been commonly used. As another common and 
effective numerical method, the boundary element method 
(BEM) has been nowadays widely used for this kind of 

problems with high calculation accuracy and excellent 
adaptability to complex boundaries. For instance, BEM has 
been used to determine the insertion loss of sound barriers 
of various shapes [7-10] and calculate the reactions to 
noise by the balcony of a building [11]. 

The computed results, which are induced via BEM 
through the Helmholtz equation for 2D sound fields, are 
affected the numerical integration accuracy. However, few 
literatures have explained in which way the BEM results of 
sound barrier diffraction problems are influenced by the 
numerical integration accuracy. To solve the problems of 
obstacle diffraction with BEM, it is essential to abide by 
specific requirements on boundary and accuracy. 
Therefore, this work was aimed at studying how the BEM 
results of sound barrier diffraction problems are affected 
by the numerical integration accuracy.To solve wedge 
diffraction problems, it is essential to abide by specific 
requirements on boundary and accuracy while dividing the 
element length (which is usually adopted at 1/4-1/20 
wavelength by scholars for calculation [12-14]). 
Nevertheless, hardly any literature has compared the 
requirements on selecting element lengths for obstacles 
with different shapes especially with wedge. Therefore, 
this work was not only aimed at studying how the BEM 
results of sound barrier diffraction problems are affected 
by the numerical integration accuracy, but also comparing 
the requirements on element lengths for obstacles of 
wedge. 

II. THE BOUNDARY ELEMENT METHOD IN EQUATIONS 

FOR SOUND FIELDS 

A. The establishment of the boundary integral equation 

As shown in Fig .1, suppose there is a two-dimensional 
sound field involving an infinite sound barrier with 
uniform cross section, and an acoustic line source which is 
parallel to both the sound barrier and the ground. S is taken 
as the boundary of the sound barrier, the acoustic source is 

International Conference on Education, Management, Computer and Society (EMCS 2016)

© 2016. The authors - Published by Atlantis Press 1367

mailto:caiming@mail.sysu.edu.cn


located at r0 = (x0, y0), an arbitrary receiving point is 
located at r = (x, y), thus in fluid medium, the sound 
pressure p(r, r0) at the receiving point r satisfies the 
Helmholtz equation 
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 is the wave number, ω is the wave frequency, c is 

the sound velocity; 
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 represents the sound source 
at r0. 

 
Figure 1.  A two-dimensional sound field. 

On the boundary, p(r, r0) satisfies the impedance 
boundary conditions 
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Where n is the outward normal direction of the 

boundary; i stands for the imaginary unit; β refers to the 
acoustic admittance of the boundary. 

A boundary integral equation can be obtained 
according to Green's second integral formula, considering 
conditions of the boundary and properties of the δ function: 
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Where Gβc(r, r0) is a fundamental solution of the 
Helmholtz equation, suppose the ground is a fully rigid 
boundary, then Gβc(r, r0) can be expressed as 
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Here 
 0 0 0,r x y  

 stands for the mirror image 

source of r0 relative to the ground; 
 1

0H
 is a zero-order 

Hankel function of the first kind. 

B. The boundary element method used to solve boundary 

integral equations 

Divide the boundary S discretely into N elements and 
mark them s1, s2,…sN. Suppose the elements are constant, 
assign the midpoints of such elements as nodes, and let the 
sound pressure level p(ri, r0) at the midpoint of element i 
denote the sound pressure at any point within the element, 
then (3) can be written as 
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In the equation (6), let r take on the values of r1，
r2，…， rN , then a group of n-dimensional complex 

coefficient linear equations could be obtained, with respect 
to unknowns of p(r1, r0)，p(r2, r0), …, p(rN, r0) 
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All elements in matrix [A], vector [P] and vector [G] 
are complex numbers. Solve the linear equations, and put 
the obtained boundary sound pressure p(r1, r0), p(r2, 
r0), ..., p(rN, r0) into equation (6), then for an arbitrary 
point in area V, its sound pressure p(r, r0) can be 
calculated. 

Then ΔL, the insertion loss of the sound barrier, is 
given by the following formula 
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Where p0(r, r0) stands for the sound pressure at the 

receiving point if the sound barrier takes no effect 
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III. THE IMPACTS OF THE ACCURACY OF NUMERICAL 

INTEGRATION ON THE RESULTS 

During the establishment of linear equations (7), all 
elements in matrix [A] were obtained through integration 
of (9) with numerical integration approaches. The 
precision of all elements in matrix [A] is directly 
influenced by the integration accuracy, which further 
affects the final results. 

Two numerical integration methods, midpoint 
rectangle rule and composite four-point Gaussian 
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quadrature rule, have been compared in this work. Under 
the midpoint rectangular rule, an integrating interval is 
equally divided into k subintervals, and the function value 
at the midpoint of a subinterval is taken as the value of the 
sub-interval (totally k computing points are taken). 
Whereas under the composite four-point Gaussian 
quadrature rule, the integrating interval is also equally 
divided into k subintervals, and 4 computing points are 
taken within each sub-interval in a certain proportion and 
weighting (4k computing points are taken in all). The m 
was set to 26. The midpoint rectangle rule and the 
composite four-point Gaussian rule were respectively used 
in integration, and other conditions were the same as those 
in the previous example. The relationship between the 
number of computing points (taken during the integration 
of each element) and the final results of ΔL has been 
presented in Fig .2. It is clear that the number of 
integration points has relatively little effect on the results, 
and the composite four-point Gaussian rule has a higher 
convergence rate than the midpoint rectangle rule. During 
calculation with the four-point Gaussian rule, an accuracy 
of 8 digits could be reached as long as more than 20 
computing points are taken in each element. 

 

Figure 2.  Relationship between the number of computing points and the 

insertion loss ΔL. 

IV. ANALYSIS OF CALCULATION EXAMPLE OF WEDGE 

INSERTION LOSS 

     The stability of BEM results will get worse if the 
sound barrier is changed over to a 90° wedge of the same 
height, as shown in Fig 3. Even if the element length is 
shortened to 0.00707 m, some deviation still arises above 
the high frequency of 3000 Hz (λ = 0.113 m). The results 
fit well with GTD results at any frequency below 3000 Hz. 
However, unlike thin-screen and thick-screen problems, 
the wedge problems involve low characteristic frequencies 
of 340 Hz, 680 Hz, 1020 Hz, 1360 Hz and so on. The 
results deviate severely at any of the frequencies, since 
BEM yields more than one solutions at these special 
frequencies. This problem can usually be solved in two 
ways, one is the combined Helmholtz integral equation 
formulation (CHIEF) proposed by Schenck [15,16], the 
other is a method suggested by Burton and Miller to 
incorporate an equation for the normal derivative at the 
boundary [17]. The CHIEF method has been used herein to 

add integral equations for points that are out of the sound 

field (namely the case in equation (4), if r V S ). Two 
points out of the field were taken, whose coordinates are 
(0.1, 2.0) and (1.1, 1.0). Thus, the equation (7) turns into 
over-determined equations, which are then solved with the 
least square method to get correct results. Above all, for 
the wedge diffraction problem, the results will not agree 
with GTD results unless the element length l is less than 
λ/20. However, it is necessary to consider the influence of 
some characteristic frequencies. 

 

Figure 3.  Comparison of wedge insertion loss calculated with GTD 

(squares) and BEM (circles) for different frequencies and different BEM 

element lengths. 

V.  CONCLUSIONS 

In this work, the BEM has been used with constant 
elements to calculate two-dimensional sound diffraction 
problems of wedge. Then their results were compared with 
GTD results. Analysis has been done to find out how the 
results are influenced by the calculation accuracy of the 
numerical integration accuracy. Moreover, it has been 
discussed how to solve the problem that non-unique 
solutions arise from BEM at some characteristic 
frequencies. 

The computed results are hardly affected by the 
numerical integration accuracy. However, the element 
division has relatively significant effects on such results. 
As to diffraction problems involving obstacles of wedge, 
the element must be shorter than λ/20. Furthermore, it is 
necessary to avoid the impacts of characteristic frequencies 
during calculation.  
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