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Abstract. To solve the hybrid flow shop scheduling problems with minimum makespan objective, a 
local search based on the active scheduling technique was proposed. First, a good initial solution was 
generated by the NEH-based heuristic. Next, a problem-specific local search was developed to 
improve the initial solution. Last, the experimental results of benchmark instances indicate the 
effectiveness of the proposed algorithm, which can find the optima for more instances with a small 
overall average deviation of 3.445% (decreased by 2.359% compared with NEH-based heuristic). 

Introduction 
Production scheduling is a decision-making process that plays a critical role in manufacturing and 
service industries. It deals with the allocation of available production resources to tasks over given 
time periods, aiming at optimizing one or more objective. The hybrid flow shop (HFS) scheduling 
problems, as one branch of classical flow shop scheduling problems, are much more complex owing 
to the addition of machine assignment. This type of problems widely exists in practical production 
systems, such as steel, paper, electronics, petrochemical, and textile industries [1]. 

In this paper, we consider the HFS scheduling problems with minimum makespan (denoted as 
maxC ) objective. The complexity of the HFS problems has been proven to be NP-hard even when the 

problems have only two stages [2]. Therefore, exact algorithms such as branch-and-bound [3,4] and 
mixed-integer linear programming can optimally solve the small-size problems. For decades, much 
more effort has been devoted to searching high-quality solutions in a reasonable computational time 
by heuristics [5-8] and metaheuristics [9-11]. The purpose of this work is to improve the performance 
of an NEH-based heuristic [7], and solve the HFS problems in a way we approached using local 
search (LS). 

Problem Formulation 
The HFS scheduling problems considered in this paper can be described as follows. There are n  
independent and simultaneously available jobs to be processed through s  stages in series. Stage k  
has ( )kM  identical machines ( ( ) 2kM ≥  for at least one stage) and has sufficient capacity of buffer 
storage for work-in-processes. Each machine can process at most one job at a time. Job j  has a 
processing time jkp  and has to be processed without preemption by exactly one machine at stage k . 
Job setup times and the transportation times between consecutive stages are included in the 
processing times or can be negligible. The objective is to find a schedule that minimizes the makespan. 
The mathematical model can be found in [7,10]. 

Problem-Solving Strategy 

Active Scheduling Technique. An active schedule is feasible schedule in which no operation can be 
completed earlier without delaying other operations. For the HFS problems, it is sufficient to consider 
only active schedules since the optimal schedule is active [12]. In order to employ this problem- 
specific knowledge, an extended Giffler & Thompson (EGT) algorithm was proposed to generate all 
possible active schedules [9]. 
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Solution Strategy. By observing the EGT algorithm, the generation process is controlled by a set 
of priority rules which resolves conflict situations from stage 1 to stage s . For a given complete 
schedule, if all possible choices from conflict sets are considered, all active schedules close to it will 
be generated. This neighborhood is called active neighborhood. It is safe and efficient to limit search 
space to the active neighborhood. 

The Proposed Algorithm 

Solution Representation. In the proposed algorithm, each solution is simply represented by a string 
of numbers consisting of a permutation of n  jobs denoted by 1, 2, …, n . This permutation-based 
encoding is commonly used in most of the literature for HFS [5,8,10]. Suppose that one solution is 
represented by (5, 4, 3, 2, 1), which means that the processing sequence is 5J , 4J , 3J , 2J  and 1J  at 
stage 1. 

Decoding. It is notable that the solution encoding given above contains no machine assignment 
information in each stage. Therefore, we should consider both job sequencing and machine 
assignment in the decoding process. The common method used in this algorithm is as follows [11]: (1) 
in the first stage, schedule each job according to their sequence in the solution representation, and 
assign each job to the first available machine; (2) in the following stages, assign the first available 
machine for arriving job. 

Initial Solution. The NEH was recognized as the highest performing heuristic for the permutation 
flow shop scheduling problems to minimize the makespan. Guinet and Solomon extended NEH to the 
HFS problems and outperformed the other heuristics [7]. Therefore, this NEH-based heuristic will be 
used to generate an initial solution. 

The Framework of Local Search. The detailed steps of the proposed algorithm are as follows: 
Step 1. Use NEH-based heuristic to generate a sequence ( )1 11 12 1, , , nπ π π π= L , and decode it into a complete schedule 

S . 
 Step 2. jkr  is the earliest start time at which job j  can be processed at stage k , mkT  is the earliest 

available time of machine m  at stage k . Set 1k = . 
Step 3. N  is the set of all jobs to be scheduled at stage k , i.e. {1,2, , }N n= L , and set 1h = . 

Step 4. Find the first available machine f  at stage k , compute the minimum completion time 

( ){ }*
c min max ,fk jk jkj N

t T r p
∈

= + , and determine the conflict set *
c{ | , }jkC j r t j N= < ∈  for machine f . 

Step 5. For ( )khj Cπ∀ ≠ ∈ , insert this job before khπ , and obtain a new sequence kπ ′ . Schedule stage k  according to 

kπ ′  and the subsequent stages (i.e. 1, 2, ,k k s+ + L )      according to the release times of the jobs. We denote the yielded 

complete schedule as a neighbor of S .  
Step 6. Repeat Step 5 until all of the jobs in C  are considered. 
Step 7. Delete job khπ  from N , and let 1h h= + . If h n< , go to Step 4. 
Step 8. Let 1k k= + . If k s≤ , then generate the sequence kπ  according to their completion times 

at stage k-1, and go to Step 3. 
Step 9. Evaluate all of the generated neighbors and output the best one S%  with a new sequence kπ %%  

at stage k% . Let S S= % , k k= % , k kπ π= %% , and go to Step 3. 
Step 10. Repeat Step 3 to Step 9 until some termination condition is satisfied. 

Computational Experiments 

Experimental Setup. In our computational experiments, the test instances are 77 benchmarks by 
Carlier and Néron [3]. The comparison was performed using two algorithms: NEH-based heuristic 
(simply denoted as NEH) [7], NEH with extensive search (NEHES) [8]. These three algorithms were 

497



 

 

implemented in Matlab 8.3 on a PC with Intel core i3 3.4 GHz processor and 4GB memory. In this 
study, the performance of the proposed LS algorithm is evaluated by two indices: (1) CPU time, (2) 
percentage deviation (PD) is the deviation between the solution and the lower bound (LB), i.e. 

maxPD ( LB)/LB 100C= − × . 
Computational Results. The numerical comparisons of NEH, NEHES and the proposed LS 

algorithm are given in table 1. The performances of all of the compared algorithms are summarized in 
table 2. For the easy instances, it can be seen from table 1 and table 2 that the LS solves to optimality 
39 of the 53 instances (73.585%), with a 1.430% overall average percentage deviation. However, the 
NEH can solve 29 of the 53 instances (54.717%), with a larger deviation that is equal to 3.153%; the 
NEHES can solve 36 of the 53 instances (67.925%), with a larger deviation that is equal to 1.728%. 
For the hard instances, these three algorithms can solve only one of the 24 instances (4.167%), but the 
LS has the smallest average deviation of 7.897%. For the all 77 instances, the LS finds the optima for 
more instances with a small overall average deviation 3.445% (decreased by 2.359% compared with 
NEH). For the average computational time in which an algorithm finds the final solutions, the LS is 
slower than NEH and NEHES, but the average time is just equal to 0.026 s. 

Table 1  Comparison results on benchmark instances (hard instances are in italic) 

Instances LB [4] 
 NEH  NEHES  LS 
 maxC  PD[%] CPU[s]  maxC  PD[%] CPU[s]  maxC  PD[%] CPU[s] 

j10c5a2 88  88 0 0.011  88 0 0.009  88 0 0.011  
j10c5a3 117  127 8.547 0.002  119 1.709 0.019  119 1.709  0.044  
j10c5a4 121  121 0 0.001  121 0 0.001  121 0 0.001  
j10c5a5 122  126 3.279 0.001  122 0 0.005  122 0 0.011  
j10c5a6 110  115 4.545 0.001  112 1.818 0.006  110 0 0.022  
j10c5b1 130  130 0 0.001  130 0 0.001  130 0 0.001  
j10c5b2 107  107 0 0.001  107 0 0.001  107 0 0.001  
j10c5b3 109  109 0 0.001  109 0 0.001  109 0 0.001  
j10c5b4 122  122 0 0.001  122 0 0.001  122 0 0.001  
j10c5b5 153  153 0 0.001  153 0 0.001  153 0 0.001  
j10c5b6 115  129 12.174 0.001  115 0 0.003  115 0 0.002  
j10c10a1 139  147 5.755 0.001  139 0 0.003  139 0 0.009  
j10c10a2 158  160 1.266 0.001  160 1.266 0.014  160 1.266  0.036  
j10c10a3 148  152 2.703 0.001  151 2.027 0.017  148 0 0.034  
j10c10a4 149  157 5.369 0.001  149 0 0.008  149 0 0.056  
j10c10a5 148  163 10.135 0.001  155 4.730 0.016  148 0 0.034  
j10c10a6 146  159 8.904 0.001  151 3.425 0.017  151 3.425  0.052  
j10c10b1 163  163 0 0.001  163 0 0.001  163 0 0.001  
j10c10b2 157  158 0.637 0.001  158 0.637 0.015  158 0.637  0.023  
j10c10b3 169  169 0 0.001  169 0 0.001  169 0 0.001  
j10c10b4 159  159 0 0.001  159 0 0.001  159 0 0.001  
j10c10b5 165  165 0 0.001  165 0 0.001  165 0 0.001  
j10c10b6 165  165 0 0.001  165 0 0.001  165 0 0.001  
j10c10c1 113  123 8.850 0.001  118 4.425 0.022  119 5.310  0.059  
j10c10c2 116  127 9.483 0.001  121 4.310 0.017  121 4.310  0.069  
j10c10c3 98  120 22.449 0.001  119 21.429 0.017  116 18.367  0.098  
j10c10c4 103  127 23.301 0.001  127 23.301 0.015  125 21.359  0.063  
j10c10c5 121  141 16.529 0.001  129 6.612 0.017  129 6.612  0.071  
j10c10c6 97  113 16.495 0.001  109 12.371 0.024  106 9.278  0.109  
j15c5a1 178  178 0 0.001  178 0 0.001  178 0 0.001  
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j15c5a2 165  167 1.212 0.001  165 0 0.004  165 0 0.003  
j15c5a3 130  130 0 0.001  130 0 0.001  130 0 0.001  
j15c5a4 156  156 0 0.001  156 0 0.001  156 0 0.001  
j15c5a5 164  164 0 0.001  164 0 0.001  164 0 0.001  
j15c5a6 178  178 0 0.001  178 0 0.001  178 0 0.001  
j15c5b1 170  170 0 0.001  170 0 0.001  170 0 0.001  
j15c5b2 152  152 0 0.001  152 0 0.001  152 0 0.001  
j15c5b3 157  157 0 0.001  157 0 0.001  157 0 0.001  
j15c5b4 147  147 0 0.001  147 0 0.002  147 0 0.001  
j15c5b5 166  166 0 0.001  166 0 0.002  166 0 0.001  
j15c5b6 175  175 0 0.001  175 0 0.001  175 0 0.001  
j15c10a1 236  236 0 0.002  236 0 0.002  236 0 0.002  
j15c10a2 200  204 2.000 0.002  204 2.000 0.031  204 2 0.059  
j15c10a3 198  198 0 0.002  198 0 0.002  198 0 0.002  
j15c10a4 225  225 0 0.002  225 0 0.002  225 0 0.002  
j15c10a5 182  183 0.549 0.002  183 0.549 0.031  183 0.549  0.058  
j15c10a6 200  201 0.500 0.002  201 0.500 0.031  201 0.500  0.055  
j15c10b1 222  223 0.450 0.002  223 0.450 0.031  223 0.450  0.085  
j15c10b2 187  189 1.070 0.002  187 0 0.003  187 0 0.003  
j15c10b3 222  224 0.901 0.002  222 0 0.003  222 0 0.003  
j15c10b4 221  221 0 0.002  221 0 0.002  221 0 0.002  
j15c10b5 200  200 0 0.002  200 0 0.002  200 0 0.002  
j15c10b6 219  219 0 0.002  219 0 0.002  219 0 0.002  
j10c5c1 68  72 5.882 0.001  71 4.412 0.005  71 4.412  0.015  
j10c5c2 74  78 5.405 0.001  77 4.054 0.006  77 4.054  0.024  
j10c5c3 71  79 11.268 0.001  74 4.225 0.008  75 5.634  0.016  
j10c5c4 66  74 12.121 0.001  70 6.061 0.008  70 6.061  0.023  
j10c5c5 78  79 1.282 0.001  79 1.282 0.004  79 1.282  0.012  
j10c5c6 69  77 11.594 0.001  71 2.899 0.008  73 5.797  0.017  
j10c5d1 66  75 13.636 0.001  72 9.091 0.007  71 7.576  0.022  
j10c5d2 73  79 8.219 0.001  79 8.219 0.004  76 4.110  0.037  
j10c5d3 64  73 14.063 0.001  70 9.375 0.006  70 9.375  0.022  
j10c5d4 70  74 5.714 0.001  72 2.857 0.006  72 2.857  0.023  
j10c5d5 66  71 7.576 0.001  70 6.061 0.006  70 6.061  0.024  
j10c5d6 62  69 11.290 0.001  67 8.065 0.006  66 6.452  0.021  
j15c5c1 85  91 7.059 0.001  89 4.706 0.011  89 4.706  0.038  
j15c5c2 90  99 10.000 0.001  94 4.444 0.017  93 3.333  0.082  
j15c5c3 87  95 9.195 0.001  95 9.195 0.010  92 5.747  0.063  
j15c5c4 89  98 10.112 0.001  92 3.371 0.012  92 3.371  0.056  
j15c5c5 73  84 15.068 0.001  78 6.849 0.015  78 6.849  0.060  
j15c5c6 91  95 4.396 0.001  95 4.396 0.009  95 4.396  0.033  
j15c5d1 167  167 0 0.001  167 0 0.001  167 0  0.001  
j15c5d2 82  95 15.854 0.001  91 10.976 0.012  89 8.537  0.059  
j15c5d3 77  88 14.286 0.001  85 10.390 0.015  86 11.688  0.061  
j15c5d4 61  90 47.541 0.001  89 45.902 0.013  88 44.262  0.060  
j15c5d5 67  85 26.866 0.001  84 25.373 0.012  84 25.373  0.065  
j15c5d6 79  88 11.392 0.001  86 8.861 0.014  85 7.595  0.094  
Mean -  - 5.804 0.001  - 3.800 0.008  - 3.445  0.026 
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Table 2  Performance summary of benchmark instances  

Algorithms 
 Easy instances   Hard instances 
 Solved[%] PD [%] CPU [s]  Solved[%] PD [%] CPU [s] 

NEH  54.717 3.153 0.001  4.167 11.659 0.001 
NEHES  67.925 1.728 0.008  4.167 8.378 0.009 

LS  73.585 1.430 0.021  4.167 7.897 0.039 

Conclusions 
A problem-specific local search was developed to solve the HFS scheduling problems. To evaluate 
the performance of the LS, it was tested on the well-known benchmark instances by Carlier and Néron. 
Computational results show that the LS outperforms the other algorithms. 
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