

An Effective Local Search for Hybrid Flow Shop Scheduling Problems

Zhixiong Su1, a, Junmin Yi1, b
1School of Management, Xiamen University of Technology, Xiamen 361024, China

az.su@163.com, byijunmin@xmut.edu.cn

Keywords: production scheduling; hybrid flow shop; local search; active schedule
Abstract. To solve the hybrid flow shop scheduling problems with minimum makespan objective, a
local search based on the active scheduling technique was proposed. First, a good initial solution was
generated by the NEH-based heuristic. Next, a problem-specific local search was developed to
improve the initial solution. Last, the experimental results of benchmark instances indicate the
effectiveness of the proposed algorithm, which can find the optima for more instances with a small
overall average deviation of 3.445% (decreased by 2.359% compared with NEH-based heuristic).

Introduction
Production scheduling is a decision-making process that plays a critical role in manufacturing and
service industries. It deals with the allocation of available production resources to tasks over given
time periods, aiming at optimizing one or more objective. The hybrid flow shop (HFS) scheduling
problems, as one branch of classical flow shop scheduling problems, are much more complex owing
to the addition of machine assignment. This type of problems widely exists in practical production
systems, such as steel, paper, electronics, petrochemical, and textile industries [1].

In this paper, we consider the HFS scheduling problems with minimum makespan (denoted as
maxC) objective. The complexity of the HFS problems has been proven to be NP-hard even when the

problems have only two stages [2]. Therefore, exact algorithms such as branch-and-bound [3,4] and
mixed-integer linear programming can optimally solve the small-size problems. For decades, much
more effort has been devoted to searching high-quality solutions in a reasonable computational time
by heuristics [5-8] and metaheuristics [9-11]. The purpose of this work is to improve the performance
of an NEH-based heuristic [7], and solve the HFS problems in a way we approached using local
search (LS).

Problem Formulation
The HFS scheduling problems considered in this paper can be described as follows. There are n
independent and simultaneously available jobs to be processed through s stages in series. Stage k
has ()kM identical machines (() 2kM ≥ for at least one stage) and has sufficient capacity of buffer
storage for work-in-processes. Each machine can process at most one job at a time. Job j has a
processing time jkp and has to be processed without preemption by exactly one machine at stage k .
Job setup times and the transportation times between consecutive stages are included in the
processing times or can be negligible. The objective is to find a schedule that minimizes the makespan.
The mathematical model can be found in [7,10].

Problem-Solving Strategy

Active Scheduling Technique. An active schedule is feasible schedule in which no operation can be
completed earlier without delaying other operations. For the HFS problems, it is sufficient to consider
only active schedules since the optimal schedule is active [12]. In order to employ this problem-
specific knowledge, an extended Giffler & Thompson (EGT) algorithm was proposed to generate all
possible active schedules [9].

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

© 2016. The authors - Published by Atlantis Press 496

Solution Strategy. By observing the EGT algorithm, the generation process is controlled by a set
of priority rules which resolves conflict situations from stage 1 to stage s . For a given complete
schedule, if all possible choices from conflict sets are considered, all active schedules close to it will
be generated. This neighborhood is called active neighborhood. It is safe and efficient to limit search
space to the active neighborhood.

The Proposed Algorithm

Solution Representation. In the proposed algorithm, each solution is simply represented by a string
of numbers consisting of a permutation of n jobs denoted by 1, 2, …, n . This permutation-based
encoding is commonly used in most of the literature for HFS [5,8,10]. Suppose that one solution is
represented by (5, 4, 3, 2, 1), which means that the processing sequence is 5J , 4J , 3J , 2J and 1J at
stage 1.

Decoding. It is notable that the solution encoding given above contains no machine assignment
information in each stage. Therefore, we should consider both job sequencing and machine
assignment in the decoding process. The common method used in this algorithm is as follows [11]: (1)
in the first stage, schedule each job according to their sequence in the solution representation, and
assign each job to the first available machine; (2) in the following stages, assign the first available
machine for arriving job.

Initial Solution. The NEH was recognized as the highest performing heuristic for the permutation
flow shop scheduling problems to minimize the makespan. Guinet and Solomon extended NEH to the
HFS problems and outperformed the other heuristics [7]. Therefore, this NEH-based heuristic will be
used to generate an initial solution.

The Framework of Local Search. The detailed steps of the proposed algorithm are as follows:
Step 1. Use NEH-based heuristic to generate a sequence ()1 11 12 1, , , nπ π π π= L , and decode it into a complete schedule

S .
 Step 2. jkr is the earliest start time at which job j can be processed at stage k , mkT is the earliest

available time of machine m at stage k . Set 1k = .
Step 3. N is the set of all jobs to be scheduled at stage k , i.e. {1,2, , }N n= L , and set 1h = .

Step 4. Find the first available machine f at stage k , compute the minimum completion time

(){ }*
c min max ,fk jk jkj N

t T r p
∈

= + , and determine the conflict set *
c{ | , }jkC j r t j N= < ∈ for machine f .

Step 5. For ()khj Cπ∀ ≠ ∈ , insert this job before khπ , and obtain a new sequence kπ ′ . Schedule stage k according to

kπ ′ and the subsequent stages (i.e. 1, 2, ,k k s+ + L) according to the release times of the jobs. We denote the yielded

complete schedule as a neighbor of S .
Step 6. Repeat Step 5 until all of the jobs in C are considered.
Step 7. Delete job khπ from N , and let 1h h= + . If h n< , go to Step 4.
Step 8. Let 1k k= + . If k s≤ , then generate the sequence kπ according to their completion times

at stage k-1, and go to Step 3.
Step 9. Evaluate all of the generated neighbors and output the best one S% with a new sequence kπ %%

at stage k% . Let S S= % , k k= % , k kπ π= %% , and go to Step 3.
Step 10. Repeat Step 3 to Step 9 until some termination condition is satisfied.

Computational Experiments

Experimental Setup. In our computational experiments, the test instances are 77 benchmarks by
Carlier and Néron [3]. The comparison was performed using two algorithms: NEH-based heuristic
(simply denoted as NEH) [7], NEH with extensive search (NEHES) [8]. These three algorithms were

497

implemented in Matlab 8.3 on a PC with Intel core i3 3.4 GHz processor and 4GB memory. In this
study, the performance of the proposed LS algorithm is evaluated by two indices: (1) CPU time, (2)
percentage deviation (PD) is the deviation between the solution and the lower bound (LB), i.e.

maxPD (LB)/LB 100C= − × .
Computational Results. The numerical comparisons of NEH, NEHES and the proposed LS

algorithm are given in table 1. The performances of all of the compared algorithms are summarized in
table 2. For the easy instances, it can be seen from table 1 and table 2 that the LS solves to optimality
39 of the 53 instances (73.585%), with a 1.430% overall average percentage deviation. However, the
NEH can solve 29 of the 53 instances (54.717%), with a larger deviation that is equal to 3.153%; the
NEHES can solve 36 of the 53 instances (67.925%), with a larger deviation that is equal to 1.728%.
For the hard instances, these three algorithms can solve only one of the 24 instances (4.167%), but the
LS has the smallest average deviation of 7.897%. For the all 77 instances, the LS finds the optima for
more instances with a small overall average deviation 3.445% (decreased by 2.359% compared with
NEH). For the average computational time in which an algorithm finds the final solutions, the LS is
slower than NEH and NEHES, but the average time is just equal to 0.026 s.

Table 1 Comparison results on benchmark instances (hard instances are in italic)

Instances LB [4]
 NEH NEHES LS
 maxC PD[%] CPU[s] maxC PD[%] CPU[s] maxC PD[%] CPU[s]

j10c5a2 88 88 0 0.011 88 0 0.009 88 0 0.011
j10c5a3 117 127 8.547 0.002 119 1.709 0.019 119 1.709 0.044
j10c5a4 121 121 0 0.001 121 0 0.001 121 0 0.001
j10c5a5 122 126 3.279 0.001 122 0 0.005 122 0 0.011
j10c5a6 110 115 4.545 0.001 112 1.818 0.006 110 0 0.022
j10c5b1 130 130 0 0.001 130 0 0.001 130 0 0.001
j10c5b2 107 107 0 0.001 107 0 0.001 107 0 0.001
j10c5b3 109 109 0 0.001 109 0 0.001 109 0 0.001
j10c5b4 122 122 0 0.001 122 0 0.001 122 0 0.001
j10c5b5 153 153 0 0.001 153 0 0.001 153 0 0.001
j10c5b6 115 129 12.174 0.001 115 0 0.003 115 0 0.002
j10c10a1 139 147 5.755 0.001 139 0 0.003 139 0 0.009
j10c10a2 158 160 1.266 0.001 160 1.266 0.014 160 1.266 0.036
j10c10a3 148 152 2.703 0.001 151 2.027 0.017 148 0 0.034
j10c10a4 149 157 5.369 0.001 149 0 0.008 149 0 0.056
j10c10a5 148 163 10.135 0.001 155 4.730 0.016 148 0 0.034
j10c10a6 146 159 8.904 0.001 151 3.425 0.017 151 3.425 0.052
j10c10b1 163 163 0 0.001 163 0 0.001 163 0 0.001
j10c10b2 157 158 0.637 0.001 158 0.637 0.015 158 0.637 0.023
j10c10b3 169 169 0 0.001 169 0 0.001 169 0 0.001
j10c10b4 159 159 0 0.001 159 0 0.001 159 0 0.001
j10c10b5 165 165 0 0.001 165 0 0.001 165 0 0.001
j10c10b6 165 165 0 0.001 165 0 0.001 165 0 0.001
j10c10c1 113 123 8.850 0.001 118 4.425 0.022 119 5.310 0.059
j10c10c2 116 127 9.483 0.001 121 4.310 0.017 121 4.310 0.069
j10c10c3 98 120 22.449 0.001 119 21.429 0.017 116 18.367 0.098
j10c10c4 103 127 23.301 0.001 127 23.301 0.015 125 21.359 0.063
j10c10c5 121 141 16.529 0.001 129 6.612 0.017 129 6.612 0.071
j10c10c6 97 113 16.495 0.001 109 12.371 0.024 106 9.278 0.109
j15c5a1 178 178 0 0.001 178 0 0.001 178 0 0.001

498

j15c5a2 165 167 1.212 0.001 165 0 0.004 165 0 0.003
j15c5a3 130 130 0 0.001 130 0 0.001 130 0 0.001
j15c5a4 156 156 0 0.001 156 0 0.001 156 0 0.001
j15c5a5 164 164 0 0.001 164 0 0.001 164 0 0.001
j15c5a6 178 178 0 0.001 178 0 0.001 178 0 0.001
j15c5b1 170 170 0 0.001 170 0 0.001 170 0 0.001
j15c5b2 152 152 0 0.001 152 0 0.001 152 0 0.001
j15c5b3 157 157 0 0.001 157 0 0.001 157 0 0.001
j15c5b4 147 147 0 0.001 147 0 0.002 147 0 0.001
j15c5b5 166 166 0 0.001 166 0 0.002 166 0 0.001
j15c5b6 175 175 0 0.001 175 0 0.001 175 0 0.001
j15c10a1 236 236 0 0.002 236 0 0.002 236 0 0.002
j15c10a2 200 204 2.000 0.002 204 2.000 0.031 204 2 0.059
j15c10a3 198 198 0 0.002 198 0 0.002 198 0 0.002
j15c10a4 225 225 0 0.002 225 0 0.002 225 0 0.002
j15c10a5 182 183 0.549 0.002 183 0.549 0.031 183 0.549 0.058
j15c10a6 200 201 0.500 0.002 201 0.500 0.031 201 0.500 0.055
j15c10b1 222 223 0.450 0.002 223 0.450 0.031 223 0.450 0.085
j15c10b2 187 189 1.070 0.002 187 0 0.003 187 0 0.003
j15c10b3 222 224 0.901 0.002 222 0 0.003 222 0 0.003
j15c10b4 221 221 0 0.002 221 0 0.002 221 0 0.002
j15c10b5 200 200 0 0.002 200 0 0.002 200 0 0.002
j15c10b6 219 219 0 0.002 219 0 0.002 219 0 0.002
j10c5c1 68 72 5.882 0.001 71 4.412 0.005 71 4.412 0.015
j10c5c2 74 78 5.405 0.001 77 4.054 0.006 77 4.054 0.024
j10c5c3 71 79 11.268 0.001 74 4.225 0.008 75 5.634 0.016
j10c5c4 66 74 12.121 0.001 70 6.061 0.008 70 6.061 0.023
j10c5c5 78 79 1.282 0.001 79 1.282 0.004 79 1.282 0.012
j10c5c6 69 77 11.594 0.001 71 2.899 0.008 73 5.797 0.017
j10c5d1 66 75 13.636 0.001 72 9.091 0.007 71 7.576 0.022
j10c5d2 73 79 8.219 0.001 79 8.219 0.004 76 4.110 0.037
j10c5d3 64 73 14.063 0.001 70 9.375 0.006 70 9.375 0.022
j10c5d4 70 74 5.714 0.001 72 2.857 0.006 72 2.857 0.023
j10c5d5 66 71 7.576 0.001 70 6.061 0.006 70 6.061 0.024
j10c5d6 62 69 11.290 0.001 67 8.065 0.006 66 6.452 0.021
j15c5c1 85 91 7.059 0.001 89 4.706 0.011 89 4.706 0.038
j15c5c2 90 99 10.000 0.001 94 4.444 0.017 93 3.333 0.082
j15c5c3 87 95 9.195 0.001 95 9.195 0.010 92 5.747 0.063
j15c5c4 89 98 10.112 0.001 92 3.371 0.012 92 3.371 0.056
j15c5c5 73 84 15.068 0.001 78 6.849 0.015 78 6.849 0.060
j15c5c6 91 95 4.396 0.001 95 4.396 0.009 95 4.396 0.033
j15c5d1 167 167 0 0.001 167 0 0.001 167 0 0.001
j15c5d2 82 95 15.854 0.001 91 10.976 0.012 89 8.537 0.059
j15c5d3 77 88 14.286 0.001 85 10.390 0.015 86 11.688 0.061
j15c5d4 61 90 47.541 0.001 89 45.902 0.013 88 44.262 0.060
j15c5d5 67 85 26.866 0.001 84 25.373 0.012 84 25.373 0.065
j15c5d6 79 88 11.392 0.001 86 8.861 0.014 85 7.595 0.094
Mean - - 5.804 0.001 - 3.800 0.008 - 3.445 0.026

499

Table 2 Performance summary of benchmark instances

Algorithms
 Easy instances Hard instances
 Solved[%] PD [%] CPU [s] Solved[%] PD [%] CPU [s]

NEH 54.717 3.153 0.001 4.167 11.659 0.001
NEHES 67.925 1.728 0.008 4.167 8.378 0.009

LS 73.585 1.430 0.021 4.167 7.897 0.039

Conclusions
A problem-specific local search was developed to solve the HFS scheduling problems. To evaluate
the performance of the LS, it was tested on the well-known benchmark instances by Carlier and Néron.
Computational results show that the LS outperforms the other algorithms.

Acknowledgements
This work was financially supported by the National Natural Science Foundation of China
(71371162), Natural Science Foundation of Fujian Province, China (2014J01271), and High-Level
Talent Foundation of Xiamen University of Technology (YSK10009R).

References
[1] R. Ruiz, J.A. Vázquez-Rodríguez, The hybrid flow shop scheduling problem, Eur. J. Oper. Res.
205 (2010) 1-18.

 [2] J.N.D. Gupta, Two-stage hybrid flowshop scheduling problem, J. Oper. Res. Soc. 39 (1988)
359-364.

[3] J. Carlier, E. Néron, An exact method for solving the multi-processor flow-shop, RAIRO- Oper.
Res. 34 (2000) 1-25.

[4] E. Néron, P. Baptiste, J. N. D. Gupta, Solving hybrid flow shop problem using energetic reasoning
and global operations, Omega- Int. J. Manage. S. 29 (2001) 501-511.

[5] D.L. Santos, J.L. Hunsucker, D.E. Deal, Flowmult: permutation sequences for flow shops with
multiple processors, J. Inf. Opt. Sci. 16 (1995) 351-366.

[6] D.L. Santos, J.L. Hunsucker, D.E. Deal, An evaluation of sequencing heuristics in flow shops with
multiple processors, Comput. Ind. Eng. 30 (1996) 681-691.

 [7] A. Guinet, M. Solomon, Scheduling hybrid flowshops to minimize maximum tardiness or
maximum completion time, Int. J. Prod. Res. 34 (1996) 1643-1654.

[8] Z.X. Su, J.M. Yi, A two-phase heuristic algorithm for hybrid flow shop scheduling problems, J.
Xiamen Univ. Tech. 23 (2015) 19-25 (In Chinese).

[9] M. Kreutz, D. Hanke, S. Gehlen, Solving extended hybrid-flow-shop problems using active
schedule generation and genetic algorithms, Proc. of International Conference on Parallel Problem
Solving from Nature, Springer, Paris, 2000, pp. 293-302.

[10] Z. Cui, X.S. Gu, An improved discrete artificial bee colony algorithm to minimize the makespan
on hybrid flow shop problems, Neurocomputing 148 (2015) 248-259.

[11] J.Q. Li, Q.K. Pan, F.T. Wang, A hybrid variable neighborhood search for solving the hybrid flow
shop scheduling problem, Appl. Soft Comput. 24 (2014) 63-77.

[12] Y.H. He, C.W. Hui, Genetic algorithm for large-size multi-stage batch plant scheduling, Chem.
Eng. Sci. 62 (2007) 1504-1523.

500

