
A Novel Efficient Host Detecting Scheme in SDN 

Yanwei Xu 
Shanghai Engineering Research Center for Broadband 

Networks and Applications 
Shanghai, China 

ywxu@bnc.org.cn 

Xiaoyuan Lu 
Shanghai Engineering Research Center for Broadband 

Networks and Applications 
Shanghai, China 
xylu@bnc.org.cn

 
Abstract—Data centers with millions of physical and virtual 

end hosts are now the basis for many Internet and cloud 
computing services. Hence, it is no longer practical to employ the 
traditional flooding method for host detecting in such large 
networks. In order to improve the efficiency of host detecting 
among millions of hosts, we present a novel Software Defined 
Networking (SDN) based broadcast scheme in this paper. In most 
of the existing SDN technologies, the centralized Controller 
usually outputs messages to every port of all switches for 
broadcasting. However, in our scheme, a broadcast tree is 
previously created and corresponding instructions are installed 
into the switches as flow entries by the Controller. Hence, the 
Controller only needs to send a message to one switch, and then 
the informed switch will automatically spread the message to 
entire network along the broadcast tree. Therefore, the heavy 
broadcast task is transferred from the Controller to the 
distributed switches, which greatly alleviates the burden on the 
Controller and reduces the interactions between the Controller 
and switches. Moreover, a prototype is developed and the 
experimental results prove the good efficiency of the presented 
broadcast scheme.  

Keywords—Broadcast; SDN; Host detecting scheme 

I.  INTRODUCTION 
The big data and cloud computing that require efficient 

cooperation among millions of hosts are widely developed and 
used in IT, industry 4.0 [1], entertainment and education, etc. 
Nevertheless, many existing technologies [3, 4, 5, 6] are not 
suitable for such large scale networks since 1) they have slow 
convergence speed and low forwarding efficiency; 2) or they 
usually use flooding method to broadcast messages, which is 
prone to endless loop and excessive resource consuming. 
However, Software Defined Networking (SDN) [7, 8] is 
emerging as a promising solution to those problems in recent 
years, which is based on some key attributes such as 
decoupling control plane (a logically centralized control 
software module named as Controller) from data plane, 
supporting uniform vendor-agnostic interfaces for forwarding 
devices (i.e., OpenFlow [9, 10, 11]) and having the ability to 
virtualize the underlying physical network. Because the 
Controller is able to learn the whole topology and control all 
machines (switches and hosts) in the network, the broadcast 
directions and paths can be ordered, which results in no 
broadcast storm. However, in most existing SDN technologies 
(such as OpenDayLight (ODL), a typical existing OpenFlow 
solution [12]), if the Controller needs to resolving ARP 
requests, it always adopts the way of spreading the message to 
each port of all switches, which is time-consuming and 
inefficient.  

In order to overcome the disadvantage, we present a novel 
efficient SDN based broadcast scheme in this paper. In the 
proposed scheme, a broadcast tree is created in advance, which 
means the path between any pair of switches has already been 
constructed previously and thus no broadcast loop will appear. 
Next, if the Controller wants to broadcast a message, it only 
needs to send the message to one switch, and then the informed 
switch will automatically spread it to other switches along the 
broadcast tree like radiation. Hence, our solution transfers the 
broadcast tasks from the centralized Controller to distributed 
switches, which alleviates the heavy burden on the Controller, 
reduces the load on the control planes between the Controller 
and switches, and results in improving the broadcast efficiency.  

The rest of the article is structured as follows. Section 2 
lists the related work. Detailed description of the presented 
broadcast scheme is shown in Section 3. And then, Section 4 
gives the experiments that can fully demonstrate the efficiency 
of the proposed scheme. Finally, we summarize the article with 
conclusions and future research directions. 

II. RELATED WORK 
 Because the ARP is known as the major source of more 
than 88% of all broadcast traffic according to [13, 14], in this 
paper, we take the ARP resolving as the example to explain 
how the proposed broadcast scheme works and show its good 
broadcast efficiency. 

 There are always two operation paradigms in many SDN 
solutions, such as NOX/C++ Controller [15], the POX/Python 
Controller [15], the Trema/Ruby Controller [16] and the 
Floodlight/Java Controller [17], while dealing with ARP 
process: reactive and proactive. In the reactive approach, the 
first packet of a flow will trigger the Controller to broadcast the 
ARP request to look for the location of the destination host and 
insert flow entries into each OpenFlow switch. This approach 
may utilize the existing flow table memory well, but the 
Controller should afford heavy work burden and the broadcast 
efficiency is much low. In the proactive approach, the end 
hosts will provide the IP-to-MAC mapping information to the 
Controller proactively, which makes the Controller pre-
populate its database. As a result, the Controller can process 
the ARP request without the need of implementing broadcast. 
However, if there are massive amount of end hosts changing 
their states (migration, active or down) in a short time, such as 
ARP attack, this proactive manner will bring disaster for the 
Controller and SDN network. 

International Conference on Intelligent Control and Computer Application (ICCA 2016)

© 2016. The authors - Published by Atlantis Press 68



III. THE PROPOSED NETWORK BROADCAST SCHEME 

 

Fig. 1. The architecture of a SDN based network.  

In SDN, the most important component is the centralized 
Controller that controls all switches based on OpenFlow 
protocol. Fig. 1 shows the basic architecture of a SDN based 
network. Considering the advantages and disadvantages of the 
reactive and proactive paradigms, a hybrid technique is used by 
us. We employ the proactive way to construct a broadcast tree 
on the switch level in advance, and then the reactive method is 
adopted to solve the ARP requests from end hosts. However, 
compared with many existing SDN solutions, with the help of 
the well-designed broadcast scheme based on the previously 
built broadcast tree, the broadcast efficiency of the ARP 
resolving in our scheme is improved dramatically. 

In our proposed scheme, the Controller is mainly 
responsible for the creation of the broadcast tree, the 
configuration of broadcast flow tables according to the 
constructed broadcast tree, and the installation of broadcast 
flow tables into switches. On the other hand, each switch is 
mainly responsible for spreading messages to two kinds of 
machines: its neighbouring switches along the broadcast tree 
and the hosts that directly connect to it under the instruction of 
its flow table. 

There are three working steps in the proposed broadcast 
scheme, and the details are described as follows. 

Step 1: Once the network boots up, each switch employs 
the Link Layer Discovery Protocol (LLDP) [18] to investigate 
its neighbourhoods. And then the switch information (e.g. the 
port attributes and the connection states among switches) will 
be uploaded to the Controller via OpenFlow protocol. Hence, 
the Controller knows the entire network topology. 

 

Fig. 2. The ARP broadcast tree and corresponding flow entries in the 
proposed scheme.  

Step 2: After Step 1, the Controller starts to adopt the Prim 
algorithm [19] to create Minimum Spanning Tree (MST) on 
switch level, and then takes it as the broadcast tree of the 
network. For instance, the broadcast tree in Fig. 2 is s6 ↔ s3 
↔ s1 ↔ s4 ↔ s5 ↔ s2 (the blue thick lines).  

Afterwards, the Controller is able to configure the 
broadcast flow tables according to the constructed broadcast 
tree as soon as possible. In Fig. 2, the bottom table is the 
broadcast flow table used by s1, and the red value indicates the 
port number of each switch. In the broadcast flow table of s1, 
the first column indicates the input port of a broadcast message; 
the last column lists the corresponding action, which is to 
spread the broadcast message via the ports that directly connect 
to the hosts under s1 or the neighbouring switches of s1 along 
the broadcast tree. For example, if a message arrives at s1 from 
port1, then s1 will send the message to its port3 (connects to s3) 
and port4 (connects to h1).  

Lastly, the Controller installs the broadcast flow tables into 
all switches. For example, the bottom table in Fig. 2 is installed 
into s1. It should be noted that the database of the Controller 
has mastered the information of switches since the broadcast 
tree has been proactively constructed on the switch level in 
advance, but been aware of nothing about the hosts until now.  

Step 3: This step focuses on the process of ARP resolving. 
As we said, the database of the Controller does not store the IP-
to-MAC address mapping information of hosts before this step. 
Hence, if h1 wants to send packets to h2 (Fig. 2), the Controller 
has no idea where h2 is, but has to broadcast the ARP request 
of h1. 

69



At that time, in traditional SDN based technologies (e.g. 
ODL), the Controller always sends the ARP request to each 
port of all switches in a flooding manner, which puts a heavy 
burden on itself and severely affects its working speed. 
However, in our scheme, the above disadvantage can be 
overcome since the broadcast flow tables are configured based 
on prepared broadcast tree and thus the broadcast load 
originally put on the Controller has been moved to the 
distributed switches. We can take Fig. 2 as the example to 
explain the procedure in detail. 

In our scheme, due to the fact that the database of the 
Controller is helpless at the beginning, the Controller has to 
send a packet_out message to s1. Then s1 will spread the 
message to its port3 and port1 according to the second flow 
entry installed by the Controller in Step 2. Thus s3 can receive 
the message from port1 and send it to next switch s6 through 
port2 (Step3_1). Similarly and simultaneously, s4 can receive 
the message from port1 and send it to next switch s5 through 
port3 (Step3_2). Afterwards, s6 can receive the message from 
port1 (Step3_3), s5 can receive the message from port1 and 
send it to next switch s2 through port2 (Step3_4). At last, s2 
can receive the message from port2 and send it to the 
destination host h2 through port1 (Step3_5). As a result, the 
message is broadcasted to entire network and finally h2 will 
respond as soon as it receives the message. After acquiring the 
ARP response, the Controller learns the IP-to-MAC address 
mapping information of h1 and h2, and then it stores the 
information in its database. Therefore, the Controller does not 
need to implement broadcast in the future if other hosts want to 
send packets to h1 or h2. Instead, the Controller can directly 
reply the ARP request according to its database. 

Since several switches (s3 and s4) may spread the message 
in parallel like the radiation due to the two broadcast directions 
in the broadcast tree, the broadcast speed of our scheme is 
much faster than those existing SDN solutions which use the 
Controller to send ARP request to each port of all switches one 
by one. 

IV. EXPERIMENTS 
Because our scheme has employed the switches to take the 

responsibility of broadcasting messages, the heavy broadcast 
task is moved from the centralized Controller to distributed 
switches. Therefore, compared with other existing SDN based 
technologies, such as ODL, our scheme is able to improve the 
work efficiency of the Controller significantly.  

For fully proving this point, we implement a prototype with 
four network scenarios, which contain 50, 100, 150 and 200 
OpenVSwitch, respectively, and each switch is in charge of 
100 KVM virtual machines under linux. To prove our proposed 
scheme can be used in general network, the network topology 
of the prototype is random. The centralized Controller is 
developed based on the ODL platform. Because the ARP 
resolution is a typical broadcast process, we choose to observe 
the ARP resolution time performances between ODL and our 
scheme in the four network scenarios. 

 

Fig. 3. The comparisons of the ARTs between ODL and our proposed 
scheme with different network sizes.  

The ART of ODL , as shown in Fig. 3, is much longer since 
the Controller must flood the searching message to each port of 
all switches one by one, which is very time-consuming. 
Unsurprisingly, our proposed scheme achieves much lower 
ART since the distributed switches take the responsibility of 
spreading messages to the entire network along the prepared 
broadcast tree in such a radiation manner. Besides, although the 
ART of our scheme grows with the increment of switches, the 
growing speed is very slow, making the ART differences 
between the ODL and our proposed scheme become larger 
with the growth of the number of switches. Therefore, from Fig. 
3, we can see the larger the network size is (implies the bigger 
number of switches), the higher broadcast efficiency our 
scheme has compared with other SDN based technologies 
(such as ODL). 

V. CONCLUSION 
In this paper, we have proposed a novel efficient SDN 

based broadcast scheme for host detecting. Different from 
other SDN solutions, the central Controller in our proposed 
scheme creates the broadcast tree in advance, and then the 
distributed switches is able to take charge of spreading message 
to entire network along the broadcast tree. A prototype is 
developed and the corresponding experimental results have 
proven the good efficiency of the proposed scheme. Although 
we use ARP resolving as the example to illustrate the broadcast 
scheme in this paper, in fact, this scheme is suitable for all 
kinds of broadcast tasks since the switches take the broadcast 
responsibility and spread the messages in parallel like the 
behavior of radiation. However, there is still space for us to 
improve the broadcast scheme further in the future. For 
example, we can optimize the way of creating broadcast tree 
and corresponding flow tables so as to make the scheme more 
intelligent and efficient.  

ACKNOWLEDGMENT 
We would like to thank the 863 plan project under the grant 

No 2013AA013505. 

 

70



REFERENCES 
 

[1] C.T. Yen, Y.C. Liu, C.C. Lin, C.C. Kao, W.B. Wang, and Y.R. Hsu, 
“Advanced manufacturing solution to industry 4.0 trend through sensing 
network and cloud computing technologies,” In Automation Science and 
Engineering (CASE), pp.1150–1152, 2014. 

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “Ascalable, commodity data 
center network architecture,” In Proceedings of the ACM SIGCOMM 
2008 Conference on Applications, Technologies, Architectures, and 
Protocols for Computer Communications, Seattle, WA, USA, August 
17-22, 2008, pp.63–74, 2008. 

[3] G. Singh and A.J. Bernstein, “A Highly Asynchronous Minimum 
Spanning Tree Protocol,” Distributed Computing, 8(3), pp.151-161, 
1995. 

[4] R.N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. 
Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable 
fault-tolerant layer 2 data center network fabric,” In Proceedings of the 
ACM SIGCOMM 2009 Conference on Applications, Technologies, 
Architectures, and Protocols for Computer Communications, Barcelona, 
Spain, August 16-21, 2009, pages 39–50, 2009. 

[5] M. Scott, A. Moore, and J. Crowcroft, “Addressing the scalability of 
ethernet with moose,” In First Workshop on Data CenterCConverged 
and Virtual Ethernet Switching (DC CAVES), ITC 21, Paris, 2009. 

[6] H. Wang, “TRILL-based Large Layer 2 Network Solution,” White Paper, 
2012. 

[7] O. N. Foundation, “Software-Defined Networking: The New Norm for 
Networks,” White paper, 2013. 

[8] A. Voellmy and J. Wang, “Scalable software defined network 
controllers,” In ACM SIGCOMM 2012 Conference, SIGCOMM ’12, 
Helsinki, Finland - August 13 - 17, 2012, pages 289–290, 2012. 

[9] P. Dely, A. Kassler, and N. Bayer, “Openflow for wireless mesh 
networks. In Proceedings of 20th International Conference on Computer 
Communications and Networks, ICCCN 2011, Maui, Hawaii, July 31 - 
August 4, 2011, pp.1–6, 2011. 

[10] N. McKeown, T. Anderson, H. Balakrishnan, G.M. Parulkar, L.L. 
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “Openflow: enabling 
innovation in campus networks. Computer Communication Review, 
38(2), pp.69–74, 2008. 

[11] R. Sherwood, M. Chan, G. A. Covington, G. Gibb, M. Flajslik, N. 
Handigol, T. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. 
Seetharaman, D. Underhill, T. Yabe, K. Yap, Y. Yiakoumis, H. Zeng, G. 
Appenzeller, R. Johari, N. McKeown, and G. M. Parulkar, “Carving 
research slices out of your production networks with openflow” 
Computer Communication Review, 40(1), pp.129–130, 2010. 

[12] OpenDayLight. http://OpenDayLight.org 
[13] K. Elmeleegy and A. L. Cox, “EtherProxy: Scaling Ethernet By 

Suppressing Broadcast Traffic,” IEEE INFOCOM, pp.1584-1592, 2009. 
[14] A. Shpiner, I. Keslassy, C. Arad, T. Mizrahi, and Y. Revah, “SAL: 

Scaling Data Centers Using Smart Address Learning,” Technical Report 
TR 14-02, Technion, 2014. 

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and 
S. Shenker, “Nox: towards an operating system for networks,” 
SIGCOMM Computer Communication Review, 38(3), pp.105–110, 
2008. 

[16] NEC, “Trema Openflow Controller,” Last accessed, Aug 2012. [Online]. 
Available: http://trema.github.com/trema/ 

[17] D. Erickson, “Floodlight Java based OpenFlow Controller,” Last 
accessed, Aug 2012. [Online]. Available: 
http://floodlight.openflowhub.org/ 

[18] M. Yokohata, T. Maeda, and Y. Okabe, “An extension of the link layer 
discovery protocol for on-demand power supply network by poe,” In 
Advanced Information Networking and Applications Workshops, 
pp.1612–1616, 2013. 

[19] B. Chen, F. Wei, J. Pan, and Y. Xia, “The minimum spanning trees of 
trna sequences based on prim’s algorithm,” In the Fifth International 
Conference on Natural Computation (ICNC), pp.176–179, 2009. 

 

71

http://dblp.uni-trier.de/pers/hd/l/Lin:Chih=Chieh�
http://dblp.uni-trier.de/pers/hd/k/Kao:Chih=Chiang�
http://dblp.uni-trier.de/pers/hd/w/Wang:Wen=Bin�
http://dblp.uni-trier.de/pers/hd/h/Hsu:Yu=Rong�
http://dblp.uni-trier.de/pers/hd/s/Singh:Gurdip�
http://dblp.uni-trier.de/pers/hd/b/Bernstein:Arthur_J=�
http://dblp.uni-trier.de/db/journals/dc/dc8.html#SinghB95�
http://opendaylight.org/�
http://trema.github.com/trema/�
http://floodlight.openflowhub.org/�

	Introduction
	related work
	The Proposed Network Broadcast Scheme
	Experiments
	Conclusion
	Acknowledgment
	References




