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Abstract.Due to imperfect water entry, a high speed supercavitating vehicle, while moving in the 
forward direction, rotatesinside the cavity. This rotation leads to a series of impacts between the 
vehicle body and the cavity wall. The impacts affect the trajectory as well as the stability of motion 
of the vehicle. The present paper discusses the dynamics of such a vehicle. Equations of motion of 
the vehicle are developed for two distinct cases of motion. Case I: the vehicle moves in the cavity 
without interaction with the cavity wall, and Case II: the impacts on the cavity wall. The equations 
are found to be coupled and nonlinear. A simple model based on the concepts of flow planes is used 
to determine the forces acting on the vehicle. The results show that despite the impacts with the 
cavity wall, the vehicle nearly follows a straight line path. The frequency of the impacts between 
the vehicle tail and cavity boundary increases initially, reaches a maximum, and then decreases 
gradually.  

Introduction 

When an underwater vehicle moves at high speeds(70 ≥ m/s), a cavitation field that exhibits a 
very low drag is created. This cavitation field is called a supercavity[1]. As a result of the 
supercavity, the vehicle is in contact with the water only at the nose during most of its flight. The 
presence of the cavity changes the nature of motion of the vehicle. The vehicle while moving in the 
forward direction also starts rotating about its tip in the vertical plane. Because of this rotation, the 
tail of the vehicle impacts on the cavity wall, and then it bounces back and impacts on the opposite 
side of the cavity and this type of oscillatory motion continues till the diameter of the cavity 
becomes small. while the vehicle moves with the cavity boundary in contact with the side surface 
and ultimately the cavity disappears[2-4]. In the present paper, the dynamics of a supercavitating 
vehicle whose motion is confined to a plane is studied. Equations of motion of the vehicle are 
developed for two distinct cases of motion: When the vehicle moves in the cavity without 
interaction with the cavity boundary, and when the vehicle impacts on the cavity boundary.  

Analysis method and mathematic model 

Dynamic model of supercavitating vehicle 
In Case I, the only force acting on the vehicle is at the nose, as shown in Fig.1(a), whereas in 

Case II, there are additional forces acting at the point of impact of the vehicle tail, as shown in 
Fig.1(b). The impact force and moment calculations are based on the method described by 
Milwitzky[5]. The drag force acting on the nose of the vehicle is determined from the experimental 
results given by Kiceniuk[6]. The formulae used to calculate the gross features of the cavity, i.e., 
the length and maximum diameter, are derived by Garabedian[7]. Throughout this paper, it is 
assumed that the vehicle has the geometry shown in Fig.2. 
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(a) Case I                                     (b) Case II 

     Fig.1 Forces acting on the projectile for case 
During cavity-running, the vehicle is in contact with the water only at the nose (neglecting 

impacts). The nose of the vehicle is assumed to be a disc of diameter. The lift and drag coefficients 
for a disc for different angles of attack have been found experimentally[8]. They are given by: 

sin cosLC k α α= and cos cosdC k α α=                     (1) 
Then the lift and the drag forces are then given by: 

21
2DL LF A Cρ ν= o  and
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Using these expressions for the forces, the magnitude of the total force acting on the nose is given by:  
21 cos

2DF A kρ ν α= o                             (3) 

In terms of the components of velocity in the 1x  and 1z  directions, the magnitude of the force is 
given by: 

2 2

2 2

1 ( )
2 ( )

D o
UF A k U W

U W
ρ= +

+
                       (4) 

Where, ρ is the density of water; oA is the area of the disc; k  is a constant. 

 
Fig 2. Culculation of force and moment 

The vehicle impacts with the cavity boundary as shows in Fig2. The angle at which the vehicle 
impacts is defined byθ . A new set of axes ( , )ξ ζ  is defined at point B. The ξ -axis points in the same 
direction as the 1x -axis while the ζ -axis points in the direction opposite to the 1z -axis. The wetted 
length of the vehicle is defined by kL . 

Normal force acting at a cross section of the vehicle which is at a distance of ξ  from the point B 
is given by: 

( )appd m W
f

dt
ξ= −                              (5) 

Where: the virtual mass is appm K dρ ζ= and the magnitude of the velocity of the point under 
consideration in the 1z direction ( ( ) )W W l Qξ ξ= + − . 
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we get an expression for the force exerted by a single flow plane on the vehicle. This force is 
then integrated over the wetted length to give the total force exerted on the vehicle. The expression for 
this force is given by: 

( )1 2 3IF K d C C W C Qρ= + + &&  and ( )1 2 3IM K d E E W E Qρ= + + &&            (6) 
To find the force and moment exerted by the water on the vehicle at any instant it is necessary 

to know the wetted length at that instant. The numerical procedure for calculating the wetted length 
is given below[9]. Fig.3 shows a vehicle hitting the cavity boundary at instant at 0t t= .In time interval 
dt , the point B travels a distance. The angle that the vehicle makes with the cavity boundary at this 
instant 1 0t t dt= + is given by 1 0 0Q dtα α= + . Using this information, the depth of penetration of point 
B, measured perpendicular to the vehicle axis can be calculated. 

 
   Fig. 3 Wetted length calculation 

For a later instant, the change in the depth of penetration of point B is calculated similarly. For 
example, for the second time step, the depth of penetration of point B, ( )l LN , is given by 

( ) ( ) ( )l LN l LM L MN= +                           (7) 
This procedure is continued till the depth of penetration equals zero. 
Kinematic model of supercavitating vehicle 

The motion of the vehicle in both phases is governed by the following three scalar equations: 
1

i
c Xm U F= Σ&                                (8) 

1
i

c Zm W F= Σ&                                (9) 
1

i
c YI Q M= Σ&                               (10) 

The accelerations in the X1-direction and Z1-direction are: 
2( )i r

c cmU U QW l x Q= + + −& &                          (11) 
( )i r i

c cm cW W QU l x Q= − + − && &                          (12) 
where m is the mass of the vehicle and I  is the moment of inertia of the vehicle about an axis parallel 
to the Y1-axis and passing through its center of mass; CU and CZ are the velocity components of the 
center of mass of the vehicle in X1 and Z1-directions; 1XFΣ and 1ZFΣ  are the net forces acting on the 
vehicle in the X1-and Z1-directions; Q is the angular velocity of the vehicle; rU& and rW& are the rate 
of change of U and W. 

The equations of motion (8)-(10), with the forces substituted, look very complicated. Although, 
the full equations are used for numerical simulations presented later in this paper, a simplified 
version of the equations is given below. These simplifed equations show the dominant terms and 
interdependencies. 
Case I: For 2 2U W , 2 22oA kU mlQρ  , 1kl l  the equations of motion can be written as: 
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Case II: For 2 2U W ， 2 22oA kU mlQρ  , 1kl l   the equations of motion can be written as: 
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Numerical simulation 
In this paper ,the cavity shape is the basis of the research on the motion of the vehicle in both 

phases. Different cavitation morphology lead to various wetted length, wetted depth and fluid 
dynamics. Here, the cavity morphology is assumed to be an ellipse (actually, it is an ellipsoid in 3D). 
The shape and size of the elliptic cavity are characterized by its maximum diameter and its length 
(see Fig. 4). It is assumed that the cavity axis remains straight and always lies along the direction of 
the absolute velocity of the vehicle nose. The geometry of the cavity is given by: 
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2

2 2max max
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( ) ( )
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and the maximum diameter and length are given by: 
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Fig. 4 Shape of the cavity 
The numerical simulations are carried out for three different conditions of the vehicle. It is 

assumed that for every condition, the vehicle has the same mass and the same diameter. The 
following initial conditions are used: 

Table 1   numerical condition 
Numerical condition    Initial velocity ( /m s ) propelling force( kn ) 

Case I 
Case II 
Case III 

120 
100 
80 

750 
400 
150 

Results and discussion 

The results of the impact forces obtained for different conditions are shown in figs.5 (a), (b), 
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(c), respectively. It seen from the figures that the magnitude of the impact forces decreases 
gradually during the impact. Also, as seen from the figure, the magnitude of the impact forces 
increases with the rise of the sailing velocity for the three different conditions. 

  
   (a) Case I               (b) Case II            (c) Case III         

   Fig.5 Time evolution of the impact force 
The results obtained for angular velocity are shown in Figs. 6 (a), (b), (c), respectively. It seen 

from the figures that the magnitude of the angular velocity decreases gradually with time evolution. 
Also, as seen from the figure, the magnitude of the angular velocity increases with the rise of the 
sailing velocity for the three different conditions. It is seen that the frequency of these impct 
increases and then remains nearly constant. 

 
(a) Case I              (b) Case II             (c) Case III         

Fig. 6 Time evolution of the angular velocity 

Conclusions 

A simple model for the dynamics of a high speed supercavitating vehicle has been presented in 
this paper. The predicted motion involves a series of impacts of the vehicle's tail with the cavity 
boundary. It is seen that the frequency of these impacts increases and then remains nearly constant. 
This is caused by the nature of variation of the angular velocity with time. It is observed that the 
vehicle nearly follows a straight line path, an e.ect caused due to the impacts between the vehicle 
tail and the cavity boundary. The dynamics of the vehicle is also found to be influenced by its mass 
distribution. Distributing the mass of the vehicle over a larger length increases the moment of 
inertia of the vehicle as well as reduces the angle of impact between the vehicle tail and the cavity 
boundary. Because of this, the initial rate of increase of the angular velocity and the magnitude of 
the maximum angular velocity reached are reduced. This leads to a reduction in the frequency of 
impacts, a reduction in the magnitude of the forces at the tail during impact and, consequently, a 
reduction in the deviation from the straight line path.  
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