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Abstract.In typical data mining applications, labeling the large amounts of data is difficult, 
expensive, and time consuming, if annotated manually.To avoid manual labeling, semi-supervised 
learninguses unlabeled data along withthe labeled data in the training process. Transductive support 
vector machine (TSVM) is one such semi-supervised, which has been found effective in enhancing 
the classification performance. However there are some deficiencies in TSVM, such as presetting 
number of the positive class samples, frequently exchange of class label, and its requirement for 
larger amount of unlabeled data. To tackle these deficiencies, in this paper, we propose a 
newsemi-supervised learning algorithm based on active learning (AL) combined with TSVM. The 
algorithm applies active learning to select the most informative instances based on the version space 
minimum-maximum division with human annotation for improve the classification 
performance.Simultaneously, in order to make full use of the distributioncharacteristics of unlabeled 
data, we addeda manifold regularization term to the objective function.Experiments performed on 
severalUCI datasetsdemonstrate that our proposedmethod achieves significant 
improvementoverother benchmark methods yet consuming less amount of human effort, which is 
very important while labeling data manually. 

1. Introduction 
Support vector machine (SVM) is a supervised machine learning approach for solving 

twoclasses pattern recognition problems. It adopts maximum margin to find the decision surface 
that separates the positive and negative labeled training examples of a class [1]. For a given date 
point, the regular SVM results in distances among datapoints ranges from 0 to 1. The value0 
indicates that thisdata pointlocates on the hyper-plane and the value of 1 means that thisdata point is 
a support vector. Although, SVM has successfully been used in various fields, such as[2], [3], [4], 
[5], [6], however, in many real world applications, there is not enough labeled data to train agood 
classification model.Compare to the standard SVM,which uses only labeled training data, 
manysemi-supervised SVMemploy unlabeled data along withsome labeled examples for 
trainingclassifierswith improved generalization and performance. Semi-supervised SVM has been 
well received because of the two reasons. Firstly, labeling a large number of examples is 
time-consuming and labor-intensive. This task has also to be carried out by qualified experts and 
thus is expensive. Secondly, some studies show that using unlabeled data for learning can improve 
the accuracy of classifiers [7], [8].Transductive support vector machine (TSVM) [9] is anefficient 
method for improving the generalization accuracy of SVM byfinding a label for the unlabeled data, 
so that a linear boundary has the maximum margin on both the original labeled data and the labeled 
unlabeled data [10]. 

The notable characteristic of TSVM; beingtransductive, aims at such learning problems that are 
real interested in only the particular datasets of the testing or working (or training) data [9], [11], 
whiletraditional work on inductive learning estimates a classifier based on some training data that 
generalizes to any input examples.The main idea of transductive learning is building models for 
best prediction performance on a particular testingdataset instead of developing generalized models 
to be applied to any testingdataset [12]. In other words, by explicitly including the working dataset 
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consisting of unlabeled examples in problem formulation, a better generalization can be achieved on 
problems with insufficient labeled data points [13].One ofthe most common problemsis that the 
machine may incorrectly label the training dataset, which willlead to classification error. The 
solution for this problem is in Active Learning. 

Active learning (AL) is a technique of selecting a small subset from the unlabeled data such 
that labeling on the subset maximizes the learning accuracy. The selected subset is manually labeled 
by experts. In this way, AL can complement the TSVM by reducing the labeling errors [14]. 

2. Background and related work 
2.1 Transductive support vector machine (TSVM) 

TSVM is a semi-supervised large-margin classification method based on the low density 
separation assumption. Similar to traditionalSVM, TSVM searches for a hyper-plane with largest 
margin to separate the classes, and simultaneously takes into account labeled and unlabeled 
examples.Although, TSVM can achieve better performance than inductive learning as it takes into 
account the distribution information, which is implicitly embodied in the large number of the 
unlabeled examples. Especially, in certain applications not suited for inductive learning, it will 
degrade the performance of the traditional inductive learning model. Yet it alsohas some drawbacks, 
such as its objective function is non-convex quadratic programming problem (called non-convex 
problem), thus difficult to minimize, the parameter N has to be specified (called presetting N 
problem)in advance, and there is no agreement on using more unlabeled examples for training will 
lead to better learning performance. In fact it may introduce incorrect labels to the training data, as 
the labeling is done by machine, and such labeling errors are critical to the classification 
performance (called exploiting unlabeled examples problem). 
2.2 Active learning (AL) 

Active learning (AL) is well-motivated in many modern machine learning problems where data 
may be abundant but labels are scarce or expensive to obtain. It is an interactive learning technique 
designed to reduce the labor cost of labeling in which the learning algorithm can freely assign the 
unlabeled data instances to the training set. The main idea is to select the most informative 
examples and ask the expert or the “oracle”(e.g., a human annotator) for their label in the successive 
learning rounds. The strategy of active learning is to select a most useful set of unlabeled examples 
with the human involvement that minimizes the expected risk of the next round. In this way, it can 
greatly improve the performance of the learning model and also can accelerate the convergence 
speed. 

According to the characteristics of AL, it takes advantage of the existing knowledge and 
initiates the selection of most likely examples to solve the problem. It effectively reduces the 
number of examples required for assessment, which can be used for TSVM to improve the 
performance of selecting the unlabeled examples. This results in selecting the most favorable 
examples to the TSVM classification model, hence improves the performance of the TSVM. 
2.3 Graph-based method 

Graph-based method is popular semi-supervised learningwhich assumes that similar data points 
should have the same class labels.It first creates a fully connected graph where the vertices are all 
labeled and unlabeled data points. The edge between any twoexamples i, j has a weight Wi, j, which 
represents the similarity of every pair samples.There are many graph-based methods which are 
mainly different based on the choice of regularization termsand loss functions.The geometry of 
probability distribution that generates the data and incorporates it as an additional regularization 
term is exploited in generative manifold regularization framework [15], [16]. Generally speaking, 
the regularization framework can be described as an optimization problem with tworegularization 
terms and a loss function, which can be shown as follows: 

( ) 2 2

1
arg min , ,

k

l

i i H MH M
f H i

V x y f r f r f
∈ =

+ +∑              (4) 

Where, the first term represents some loss function on the labeled data, e.g., hinge loss in SVM 
that enforces the distributions of two different classes have a large margin.The second term prefers 
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the decision function to be a simple classifier and Hr  is the weight of 2

H
f controlling the 

complexity of f in the reproducing kernel Hilbert space kH . The third term enforces that similar 
examples have similar output according to the similarity weighted matrix W of all training examples. 
The parameter Mr  is the weight of 2

M
f . 

The manifold regularization can be defined as: 
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where, ( ) ( )1 , ,
T

l uf f x f x +=    is a vectorevaluation on the labeled and unlabeled data, φ  is a 
nonlinear mapping from a low dimensional space to a higher dimensional Hilbert space H. L is the 
graph Laplacian, which can be expressed as -L D W= , andD is a diagonal matrix with its i-th 
diagonal 

1

l u
ii ijj

D W+

=
= ∑ , andWij are the edge weights in a data adjacency graph. 

3.Combining transductive support vector machine with active learning 
Firstly, to explore the data manifold structure, we add a regularization term, which penalizes 

any “abrupt changes” of the evaluated function values on neighbor samples in the Laplacian graph. 
Secondly, we propose a new unlabeled sample selection principle for active learning, called version 
space minimum-maximum division principle. Thirdly, we describe the ALTSVM algorithm. 
3.1 Adding the manifold regularization term to the objective function 

Adding a regularization term that is defined over unlabeled data, to the traditional SVM 
optimization function, leads to the following optimization problem of the TSVM: 

( )( ) ( )( )2
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where, ( ) ( )1 max 0,1H ⋅ = − ⋅  is the classical hinge loss for labeled data, ( ) ( )1 max 0,1H ⋅ = − ⋅  is the 
symmetric hinge loss for unlabeled examples. Note that its non-convex hat shape makes it a hard to 
solve optimization problem. 

Collobert et al. [17]proposed the CCCP approximate optimization technique, which 
decomposes a non-convex function into a convex and a concave part, and then solvesit 
iteratively.According to [17], the CCCP for TSVM has the following objective function: 
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where, iβ  is related to the derivative of the concave loss function, which is notated as: 
( ) ( )'
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s i i i i
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C R y f x if i l C if y f x s and i l
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        (12) 

To capture the geometrical structure of data, a common method is to define L as a function of 
Laplacian graph. In this way, we can explore the structure of the data by adding a regularization 
term that penalize any “abrupt changes” of the function values evaluated on neighbor samples in the 
Laplacian graph. The corresponding optimization problem of TSVMcan be defined as follows: 
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Subject to: 
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where,C2 controls the influence of unlabeled data over the objective function,C3 control the 
influence of graph-based regularization terms. Setting C3 alone to zero causes the TSVM to ignore 
manifold information of the training data. 

Introduction of the solution of ω, the optimization problem (10) and (11) can be rewritten as 
follows: 

( )

2

1 2
1

2 2

1 1

3

1min
2

,

l l u
T

i i
i i l i

l u l u

i i j i j
i l j

T T

K C C

y K x x b

C K LK

α α x x

b α

α α

+

= = +

+ +

= + =

+ +

 
+ + 

 
+

∑ ∑

∑ ∑              (15) 
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Introducing Lagrange multipliers, and solving the dual problem, we can obtain the decision 
function: 
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where, ρ ρ β
−

= − ,ρ andγiareLagrange multipliers. 
3.2 Version space minimum-maximumdivision principle for active learning 

In the regularization framework of (6), let R (f,L) denotes the objective function, that is, 
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In order to identify the most informative example, we select the unlabeled example x*that leads 
to a small value for the objective function regardless of its assigned class label y*. Based on this 
idea, the minimum-maximum division framework can be cased as follows: 
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Let the optimal decision function f* is found in formula (6), and then the formula (16) can be 
simplified as: 
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From the above discussion, we can see that an approximation to the minimum-maximum 
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division is to select the unlabeled example closest to the decision boundary f* which is trained on 
the current labeled exampledataset. 
3.3 The description of ALTSVM algorithm 

Because of the formula (17) is equals to ( )*

* * *min
j

j j
x u

y f x
∈

, so there exists such aproposition: 

Proposition 1: Let the l+u examples determine the version space as follows: 
{ } ( ){ }1,2, , , 0K i iV f H i l u y f x= ∈ ∀ ∈ + > . 

When labeled the examples ( )1 1,l lx y+ + and ( )2 2,l lx y+ + , we get the new version spaces 1
new

lV +  and 

2
new

lV + . If ( ) ( )1 1 2 2l l l ly f x y f x+ + + +> , then ( ) ( )1 2
new new

l lArea V Area V+ +> , where ( )Area V  represents the size of 
the version space. 

The framework of TSVM based on active learning(ALTSVM) algorithm is: 
Algorithm 1:TSVM based on active learning (ALTSVM) 
Input: 

L, U /* Labeled sample set, Unlabeled sample set 
k /* The number of samples in each round of interaction required labeled 

Output: 
f(x) /* Classification function 
Procedure: 

Step 1: Specify the parameterC1 and C2. Select several examples from U, labeling them 
(positive examples and negative examples are not less than one), and add them to L. Using all 
labeled examples to build an initial classification model with inductive learning.  

Step 2: Compute the decision function values of all unlabeled examples. Form a sequence S 
of unlabeled, according to the values of f (xi) in increasing order. 

Step 3: Select an example xiwith the minimum objective function value to be labeled, that is,  
( )min

i
ix u

p f x
∈

= , record the corresponding label: per iy y= . 

Delete the xifrom U, and S.Simultaneously, add the xi to L: 
{ }iU U x← − , { }iS S x← − , { }iL L x← + . 

Step 4: while 1,2, ,m k=   
do: if yper =1, then select the adjacent examplexi+q in the opposite direction of S,and label it: 

per i qy y += , where, q can be either a positive or negative value. 
ifyper =-1, then select the adjacent examplexi+q in the increasing direction of S, and label it: 

per i qy y += , where, q can be either a positive or negative value. 
Delete the xi+qfrom U, and S. Simultaneously, add the xi+q to L: 

{ }i qU U x +← − , { }i qS S x +← − , { }i qL L x +← + . 
Step 5: Retrain the TSVM over the L, and return f(x). If there are still unlabeled examples, 

return to Step 2. 

4. Experiment results and analysis 
To evaluate the performance of the proposed algorithm, we conduct a set of experiments by 

comparing the proposed algorithm with several state-of-the-art active learning methods on 
benchmark UCI datasets [18]. 
4.1 Experimental Testbed 

For our experimentation we choose four datasets from the UCI machine learning dataset, 
Hepatitis, WPBC, Bupa liver, and Votes. These datasets have beenused in many studies, such as 
[19],[20],and [21].These four datasets are binary classification problem. For each dataset, we 
choose a certain number of data as the labeled examples, and put them into the labeled data pool L; 
remove the label of the remaining data as the unlabeled examples, and put them into the unlabeled 
data pool U. 
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4.2. Compared Schemes and Experimental Setup 
We compare the proposed algorithm (TSVMAL+Graph) againstTSVMOAL, TSVMRandom, 

TSVM,SVMAL[22], [23], and the standardSVM [24]. TSVMAL is the TSVMAL+Graph algorithm 
without the manifold regularization term. TSVMOAL iteratively requests the label of that example 
data which is closest to the current hyper-plane and it uses the current predicted class label instead 
of the previous labeled adjacent example. At the same time, it starts retraining after one unlabeled 
example is labeled, and it doesn’t wait for a certain number of unlabeled examples to be 
labeled.TSVM algorithm initially trains a classifier on both labeled examples and unlabeled 
examples, which exploits the cluster structure of examples and treat it as a prior knowledge about 
the learning task.SVM algorithm only uses the labeled examples, and performance well in the case 
of a sufficient number of labeled examples, but the performance will be degraded when the labeled 
examples are scarce. TSVMAL+Graph algorithm not only exploits the manifold structure of the data to 
improve the performance of the classifier, but also exploit informative examples for human 
annotator. 

To compare these algorithms,TSVM, TSVMAL, TSVMRandom, and SVM are employed as the 
benchmark. SVM was solved by using the available matlab toolbox [24] and TSVMAL was own 
coded and implemented using the matlab. TSVM is solved by the concave convex procedure 
(CCCP), which was proposed by Collobert et al. [17]. SVM trains classifier over only the initial 
labeled training examples while TSVM trains classifiers on labeled examples together with 
unlabeled examples for cluster assumption. SVMAL trains classifier on the initial labeled training 
examples, and uses the active learning strategy to query the unlabeled examples to be labeled by 
experts. For TSVMAL+Graph algorithm the solution has been discussed in section 4.1. 
4.3 Experiment I: Experiment results on UCI datasets 
4.3.1Fixed initiallabeleddataset sizeequals to 10 (L=10) and fixed k = 1 

First, we conduct experiments with both label size fixed to 10 and k =1. Fig. 1 shows the 
classification accuracy of the four datasets:Bupa liver, Hepatitis, Votes, and WPBC. 

From Fig. 1, it can be seen clearly that: 
(1)The classification performance of using active learning methods is better than 

withoutusingactive learning. In the case of relatively small number of samples, active learning can 
actively select the samples and provide them to experts to label (the samples which are considered 
to be the most likely support vectors); the labeled samples are considered to be playing the biggest 
role in improving the classification performance. In this way, continuously expand the labeled 
sample dataset, and collate ahigh-quality training sample dataset for training the classifier. Although 
traditional SVMhas higher performance than other classification models in the case of small sample, 
such as Back Propagation (BP) neural networks, decision trees, etc., yet it cannot utilize the useful 
information implying in large amounts of unlabeled samples to improve the classification accuracy. 
Fig. 1 (c) and (d) also illustrate this point. With increasing number of labeled samples, the 
performance of TSVMAL+Graph increased gradually. When reaching a certain labeled percentage, its 
classification performance is better than traditional SVM. This also shows the active learning 
strategy is effective and reasonable for sample selection, and is very helpful to improve the 
performance of the classifier. 

(2)The selected samples using active learningcan betterreflect the true distribution of the 
sample data than random sampling strategy, which ensures that the selected samples can further 
improve the accuracy of the classifier. Meanwhile, the random sampling strategy has great 
randomness, and cannot guarantee that larger labeled samples yieldsbetter performance. Fig. 1 (a) - 
(d), show that the random sampling strategy corresponding to the accuracyand show trends such as 
greater volatility,instability, and unsuitable for practical applications. Particularly, for Votes dataset, 
the volatility of TSVMRandomis the maximum, which may be due to the distribution of the dataset. 

(3)After introducing the manifold regularization term, the proposed method can perfectly 
utilize the manifold structure of unlabeled data. For Bupa liver dataset, Hepatitis dataset, and 
WPBC dataset, the performance difference between the TSVMAL+Graphand TSVMAL is marginal. 
However, for Votes dataset, the classification performance of TSVMAL+Graphis improved rapidly, but 
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TSVMALis relatively slow. Especially, when the labeled rate equals to 10%, the performance of 
TSVMAL+Graph improves faster. Obviously, it is helpful to enhance the performance of TSVM after 
introducing the manifoldregularization term. 

 
Figure 1.The classification accuracy of each comparing algorithm changes as the number of labeled 

training instances increases 
4.3.2Differentvalues of kand fixed label size equals to 10 (L=10) 

In order to compare the effect of different values of k, we setthe initial labeled dataset size 
equals to 10 (L=10), and changed values of k.At the same time, to avoid the random error generated 
by single experiment, we conducted five times experiments, and obtain the average accuracy of four 
methods. 

Table 2 shows the experimental results of average classification accuracy on Votes dataset. 
Compared the TSVMAL, and TSVMRandom with SVMAL, we can see that the classification 
performance gap among them varies with the changes of k. For the proposed TSVMAL+Graph, it 
achieves considerably better performance with 0.9% to 3.9% improvement over the SVMAL. 

 
Table 2.The average classification accuracy of Votes dataset with different values ofk. 

k SVMAL 
TSVMRandom 
(Growth rate) 

TSVMRandom+Grap 
(Growth rate) 

TSVMAL 
(Growth rate) 

TSVMAL+Graph 
(Growth rate) 

5 83.1 70.4 
-15.3 

72.6 
-12.6 

78.5 
-5.54 

80.2 
-3.49 

10 86.6 75.2 
-13.2 

78.1 
-9.82 

83.6 
-3.46 

84.4 
-2.54 

15 88.5 81.2 
-8.25 

83.7 
-5.42 

87.8 
-0.79 

89.3 
0.90 

20 89.1 85.7 
-3.81 

86.5 
-2.92 

89.5 
0.45 

92.6 
3.93 

25 91.4 87.1 
-4.70 

88.6 
-3.06 

92.2 
0.88 

94.8 
3.72 

Average 87.7 79.92 
-9.05 

81.9 
-6.76 

86.32 
-1.69 

88.26 
0.54 
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4.3.3Comparison of using different class label strategies 
To further the comparison of the effects on classification performance of different 

predictedclass labelutilizing strategies,SVMAL, SVMOAL, TSVMOAL+Graphand TSVMAL+Graph are 
used as the test methods in the experiment. This experiment was carried out on Votes dataset and 
Hepatitis dataset.Where, theSVMOALmethod adopts the predicted class label using the current 
classifier as the measure of active learning, while theSVMAL method adopts the class label of 
previously labeledadjacent sample, which makes full use of cluster assumption among the data, that 
is, the samples have the similar predicted results with the same predicted class label. 
TSVMOAL+Graph and TSVMAL+Graphusethe same strategies of the previous two methods. 

Fig. 2 shows that the proposed active learning method compared to the previous active learning 
method, that is, comparedusing the previous labeled sample’s class label with taking advantage of 
the current classifier predicted class label.In Fig. 2 (a), theclassification performance is not very 
different between TSVMAL+Graph andTSVMOAL+Graph, which may be related to the distribution of the 
dataset.In Fig. 2(b), the difference of classification performance between 
TSVMAL+GraphandTSVMOAL+Graph,is relatively larger as compared toFig. 2 (a).Although when the 
labeled number of samples is 10%, the classification performance of TSVMOAL+Graphis better than 
TSVMAL+Graph, yetwith the increasing number of labeled samples, the performance of 
TSVMAL+Graph gradually increases, and better than TSVMOAL+Graph. In particular, when the labeled 
number of samples is 15% and 20%, the classification performance ofTSVMAL+Graph is significantly 
superior to TSVMOAL + Graph.This further backs that our proposed sample selection strategy is 
effective and feasible. 

 

 
Figure 2.The comparative results of different predicted labels utilization strategies 

5. Summary 
In this paper, we proposed to solve the problems with using transductivesupport vector machine 
(TSVM), by a preset number of positive class samplesN. Presetting the N correctly is very difficult 
before training the TSVM,therefore leads to considerable estimation error, especially when the 
number of the labeled examples is very small.To avoid using more unlabeled examples in a native 
way, we suggested active learning (AL). Studies have found no correlation between using more 
unlabeled examples lead to better learning performance, hence more accurate selection of labels is 
required instead of large number. AL solves this problem. The main idea of ourproposed algorithm 
is thatin order to capture the geometrical structure of the data, we define L as a function of 
Laplacian graph. In this way, we can explore the structure of the data manifold by adding a 
regularization term that penalize any “abrupt changes” of the function values evaluated on neighbor 
samples in the Laplacian graph.Similarly,utilizing the active learning toselectthe most informative 
instance reduces learning cost by deleting non-support vector, and achieves significant 
improvement on considerably fewer labeled data. 

38



 
 

Compared withthe sample selection based on random sampling method, the proposed algorithm 
has a positive effecton the classifier performance because of the increase number of labeled samples 
and the performanceenhancement. However, the impact of the selection sample based on random 
sampling method on the classifier performance is very volatile. ComparedwithTSVM based on 
AL,the proposed algorithm added a more manifold regularization term, which makes full use of the 
distribution characteristics of unlabeled examples.Compared with TSVM, the proposed algorithm 
has more advantages, as it doesn’t needpresettingnumber of positive class samples, doesn’t 
repeatedly exchange class label, and make use of active learning, which selects the best unlabeled 
data to maximize the performance of classifier. 
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