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Abstract. Iterative reconstruction (IR) techniques are able to provide better reconstruction results compared 

with analytic reconstruction methods in cone-beam CT (CBCT) with incomplete and noisy projection data. 

However, image reconstruction algorithm remains to be significantly time-consuming especially faced with the 

large data set which decreases the efficiency of imaging processing. Although graphic processing unit (GPU) 

has offered an attractive alternative platform to improve the computation efficiency, but the single graphic card 

is still hard to meet the practical requirement because of the limitation on video memory. This paper presents 

a distributed parallel method for iterative algorithm using multi-GPU based cluster system, which is designed 

by algorithm characteristics and hardware structures. The experiments show that the multi-GPU based cluster 

system is able to achieve the same precision with single node, meanwhile it will gain higher speedup with the 

increasing number of nodes or GPUs. The computing time of whole reconstruction reduces to almost half of 

the origin by doubling the computing devices. 

Introduction 

Computed tomography (CT) reconstructions of three-dimensional (3D) objects reconstructed from a set of 

integrals from projection data are becoming increasingly popular.  CT has the advantages of high efficiency, 

fast scanning speed, flexible scanning scope, and high image resolution. Iterative reconstruction techniques are 

able to provide better reconstruction results compared with analytic reconstruction methods such as FDK in 

CBCT with incomplete and noisy projection data [1-3]. However, these methods demand huge 

computational cost because of requiring a number of iterations to get an acceptable image, so it may hard be 

implemented in the practical applications. Recently, graphics processing units (GPUs) [4-7] have been 

employed to accelerate the iterative reconstruction. Nonetheless, the lack of research in the clinical 

application is the field requiring in-depth study. 

This paper reports our recent progress toward solving the aforementioned problems. A multi-GPU based 

cluster system for CT iterative reconstruction was developed. While using multiple GPUs is a straightforward 

idea, inter-GPU parallelization is not a trivial problem. Specifically, since different GPUs only hold their own 

memory, communication among GPUs should be handled with care to achieve satisfactory efficiency. From a 

parallel computing point of view, conventional memory organization in a parallel processing task is either 

shared memory, where all processing units share a common memory space (e.g., a GPU), or distributed 

memory, where each unit holds its own memory space for conducting inter unit data communication (e.g., a 

CPU cluster). CBCT iterative reconstruction on a multi-GPU platform, however, attains a hybrid structure of 

shared and distributed memories. Careful design of the data allocation and communication among the GPUs 

is necessary to maximally exploit the potential of all the GPUs, as will be shown in this paper. 

Background 

Imaging Model and Iterative Algorithm 

CT scanners could be modeled using several imaging systems by the following linear equation: 
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f W P .                                          (1) 

Where p P represents projection data measured at certain angles, f F represents an image function to 

be reconstructed, and the system matrix : f FW  is a projection operator corresponding to those angles. 

In practice, the discrete–discrete model is assumed. For a typical iterative algorithm, the linear equation is 

usually solved by an iterative algorithm. The typical iterative algorithm conducts two steps: forward projection 

of the current reconstructed image f and back-projection of the projections acquired by the scanner. 

X-Ray source

fi,j,k 

Z

X

Y Reconstructive 

object

Detector bin

S

 

Fig.1. Diagram of cone-beam computer tomography system. 

Theory of SART 

As a major refinement of the algebraic reconstruction technique (ART), simultaneous algebraic 

reconstruction technique (SART) [8] was proposed in 1984, which has become one of the most popular 

iterative algorithm now. The iterative expression is (2). 
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jv  and 
(k 1)

jv 
 represent the value of j th voxel in the process of k  and 1k   iteration. ip  represents the 

value of projection from i th ray.   represents the relaxation factor. I  represents the set of ray at the angle 

of  . 

Four steps can be divided from the process of iteration, which are forward projection, revise, 

back-projection and update. The first two steps can be shown as (3). 
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And the expression of the last two steps is (4). 
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So the acceleration of SART can be divided into the acceleration of forward projection and backward 

projection.  

Implementation Details.  

Our cluster system is comprised of several workstations connected by high-speed switch. One of them is 

assigned as the root node and the others are computing nodes. Each node has one or more graphic cards. 

Considering the limitation on power supply, the number of graphic cards in a node is less than that of nodes. 
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Thus the parallel strategy can be divided into three levels according to the structure of this cluster system as 

follow. 

Parallelization Strategy 

Generally speaking, CBCT reconstruction involves two datasets: one is the image dataset and the other is 

the projection dataset. When it comes to multi-GPU, at least one of the two, or both, needs to be partitioned 

with each GPU. Nevertheless, there are an infinite number of ways to divide the datasets in theory. 

Considering the reality, the one performing better than others can be found. 

One possible partitioning method is to divide the CBCT volume into sub-volumes. Considering the 

conveniences of calculation and storage, planes parallel to the coordinate plane are used to divide the volume. 

Let the rotation axis be the z axis. One is making the division plane parallel to X or Y coordinate plane, leading 

to the storage of the whole range of projections in each node. To get the right projection, which is used for 

backward projection, each node will gather all the other projections. The other is making the division plane 

parallel to the Z coordinate plane. Corresponding to the sub-volume, a part range of projection is enough, 

which reduces the amount of calculation and storage. 

Another possible way to partition is to divide the dataset of projection by angle. a subset of projections at 

certain angles is stored in each GPU, as well as the whole volume data. For the forward projection, each GPU 

can perform independently of each other. However, because of the requirement of whole projections, which 

are accumulated from all GPUs, a large amount of communication is required. 

Taking into account the storage, a sub-volume and a part of projection is stored for the first method, but 

each GPU stores a subset of projections and the whole volume data using the second method. The size of 

volume is large bigger than the size of projection, so the first method is the best choice. 

Forward projection and Back-projection 

In this study, we consider a hybrid strategy for data division in the cluster system. The main idea of data 

division strategy is the first method aforementioned. Each node stores and calculates one sub-volume, as well 

as a part range of projections at whole angles. Fig.2 shows diagram of data division. A sub-volume maps a 

range of projection. For the i th sub-volume named iv , its range of projection is ip . The projection of iv  is 

located in ip , and the projection in ip  is enough to reconstruct iv . 

There are overlapped rows between the adjacent projection, and the right value in overlapped rows is the 

summation of projection over and under it. Make sure the right value in overlapped rows, the sub-volume can 

be reconstructed accurately. So the communication between adjacent projections is necessary after forward 

projection. The whole process is described in Fig.3. 

Not all the pixels in a projection are required to transmit to the current computing GPU for the particular 

sub-volume inbackprojection operation. The range of needed pixels in the detector can be 
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Fig.2. Diagram of data division. 

obtain from geometric relationship of CT system. For the i th sub-volume, whose minimum and maximum 

coordinates in Z  direction are iz  and 1iz  , then the corresponding range of pixels in direction v  is[ , ]L R

i iv v , 

where 
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and D  represents the distance from source to detector,   represents the size of pixel, d represents the 

distance from source to the center of volume, L  represents the max distance along the x axis in the volume at 

all angles, v represents the central coordinate of the detector. 
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Fig.3. Algorithm framework. 

 

OpenMP and GPU 

For each node, OpenMP programming model is used to control the GPU. The parallelism between GPUs 

can be described as following: the projections or reconstructed volume are sent to video memory after 

received from root node. Then forward projection and backprojection are done in the GPUs. After the 

processing is finished, the reconstruction volume or projections will be transmitted back to the host memory 

and then combined into a whole. Suppose the number of GPU is N , the size of sub-volume is 
1M  and the size 

of projections is 
2M  in one node. For forward projection, each GPU in a node will have 

2 /M K  projections 

to operate and each GPU will have the whole sub-volume to be projected. For backprojection, the 

sub-volume is divided into N parts in a node and the projection is invariant. This strategy can avoid the 

communication among GPUs but it will need the accumulated time from all GPUs, leading to extra cost of 

time. 

For each GPU, the computation is achieved by employing the forward projection and backprojection 

formula derived in Gao’s paper [9] for high efficiency. GPU is perfectly expanded and adapted to general 

computation because of its many-core architectures. CUDA programming model is used for thread level 

parallelism. For different GPUs, appropriate dimension of blocks must be designed first; subsequently the 

reconstruction volume is assigned to each thread for parallel execution. 

Besides, some optimized methods can also significantly improve the efficiency of the algorithm. The 

wisdom can be summarized following: 1) Make use of constant memory. Some repeated constants 

calculation in the kernel waste the computing resources of GPU. These constants can be calculated in CPU 

first for once and then transmitted to GPU. Constant memory is the best choice to save them for its low access 

latency. 2)  Reduce the amount of global memory access. To reduce the amount of global memory access, 

more than one projection are back-projected in the kernel. A variable of register is applied for saving the 

intermediate back- projection result and then copied to global memory. 

884



 

 

Experimental Results 

To improve the computational efficiency, we have developed a multi-GPU based cluster system. The system 

contain four NVIDIA Tesla K20c GPU cards. These GPUs are labeled as GPU 1 through 4 in the rest of this 

paper. For each GPU, there are 2496 CUDA Cores, each of which attains a clock speed of 0.71 GHz. All 

processors on a GPU share 4800 MB global memory. For the host, each node has an Intel Xeon 2.60GHz 

CPU, 32GB RAM and 7200 RPM hard disk. The operating system is Windows 7 64bit with the compiler of 

Visual C++ 2010 and MPICH version 1.41, OpenMP version 2.0 and CUDA version 5.0. 

The experiment is carried out on three different type of environments: Single PC with one GPU; Cluster 

No.1: 2 nodes with 2 GPUs per node; Cluster No.2: 4 nodes with a single GPU per node. To validate our 

method for improving the computational efficiency, we perform simulation data experiment. Volume size of 

2563 and 5123 with the corresponding projections 360 × 2562 and 360 × 5122 are included, which are typing 

of 32-bit floating point. Both time cost and reconstruction quality are concerned in the experiment. 

We choose the middle slice of the reconstruction volume to estimate the image quality, shown in Fig.4 and 

Fig.5. Meanwhile, the root mean square error (RMSE) between the phantom and four different 

reconstruction volumes are calculated (Table 1). From the Table 1, we can find that the RMSE of the four 

results are all the same both the volume size of 2563 and 5123, which means that the communication between 

the nodes or GPUs doesn’t bring any error. 

Table 2 shows the time cost of the reconstruction by three types. While obtaining the same reconstruction 

results by the three types, the time with GPUs in cluster can is much less than the single one. The whole 

process is segmented into four procedures listed in the left column. The results show that the ratio of time cost 

in forward projection and backprojection is larger than others. With the increasing of nodes, the time of them 

can fall considerably. When the number of nodes is two, the overlapped rows of projection are none, so the 

cost of communication can be ignored. While the ratio of communication increase obviously on account of 

overlapping data with four nodes. Even so, the performance of cluster is much better than single one. 

RMSE 
Single workstation Cluster system 1 Cluster system 2 

2563 5123 2563 5123 2563 5123 

Iteration 1 0.052936 0.053034 0.052936 0.053034 0.052936 0.053034 

Iteration 10 0.003747 0.004691 0.003747 0.004691 0.003747 0.004691 

Iteration 30 0.003234 0.004034 0.003234 0.004034 0.003234 0.004034 

Iteration 50 0.003052 0.003518 0.003052 0.003518 0.003052 0.003518 

Table 1. RMSE in iteration 1, 10, 30, 50. 

Time 
Single workstation Cluster system 1 Cluster system 2 

2563 5123 2563 5123 2563 5123 

Forward projection[seconds] 172.09 1796.22 52.35 483.57 55.62 490.91 

Backprojection[seconds] 593.27 6045.49 178.96 1591.21 180.38 1605.18 

communication[seconds] — — 4.52 10.78 59.73 576.32 

other[seconds] 218.12 2333.63 58.62 602.37 50.41 534.89 

Total[seconds] 983.48 10175.34 293.93 2675.15 346.14 3207.30 

Speedup — — 3.35 3.78 2.84 3.17 

Table 2. Time cost in the reconstruction process by iteration 50. 
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(a) Single workstation               (b) Cluster system 1              (c) Cluster system 2 

Fig.4. Middle slice of reconstruction volume: 256*256*256 

       

(a) Single workstation               (b) Cluster system 1              (c) Cluster system 2 

Fig.5. Middle slice of reconstruction volume: 512*512*512 
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