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Abstract. Great care needs to be exercised when using C within safety-related systems. MISRA-C 
defines a suitable subset of C to be used in safety-related software development, which is easier for 
program analysis. Predicate abstraction refinement is one of the leading approaches to software 
verification. In this paper, we propose a procedure to analyze MISRA-C program with predicate 
abstraction efficiently. The efficiency of this process depends on lazy abstraction and imperative 
predicates set, which are designed for the program abstraction and predicate refinement procedures 
respectively. Besides, some features have been added to obtain the desired efficiency, such as initial 
predicates, pointer alias analysis and so on. Experiments show that it can result in a significant 
reduction of analysis time and improvement of memory usage compared to earlier methods. 

Introduction 
Several important producers of safety critical systems, in particular in the field of avionics and 

nuclear power plant systems, develop software using subsets of the C language to avoid linguistic 
features, such as dynamic allocations of memory, that are likely to cause failures difficult to detect 
during verification. MISRA-C is such a guideline that defines a suitable subset of C to be used in 
safety-related software development [1]. With a subset of C excluding these difficult aspects, some 
static analysis methods will perform better, for example, predicate abstraction (model checking).  

It is widely believed that effective model checking [2] of software systems could produce major 
enhancements in software reliability and robustness. However, the effectiveness of model checking 
of such systems is severely constrained by the state space explosion problem. Predicate abstraction 
[3, 4] is one of the most popular and widely applied methods for systematic abstraction of programs. 
Roughly, Abstraction consists of constructing an abstract program 𝑃"  from a given program 𝑃 in 
such a way that the set of possible executions of 𝑃 is a subset of those of 𝑃"; the vice-versa does not 
hold. The abstraction refinement process has been automated by the Counterexample Guided 
Abstraction Refinement paradigm [5, 6], or CEGAR for short. One of the most difficult problems in 
CEGAR is to identify, during the refinement phase, appropriate criteria to discover new predicates 
that provide better abstractions. In this respect, Lazy Abstraction is particularly interesting since it is 
capable of refining the abstraction by using different degrees of precision for different parts of the 
program. The idea is to use a control-flow graph to keep track of how the program locations are 
traversed and of predicates to represent the data-flow and the program annotations.  

Given a set of predicates 𝑃, the process of constructing abstraction is in the worst case exponential, 
both in time and space, in	  |𝑃|. Therefore, a crucial point in deriving efficient algorithms based on 
predicate abstraction is the choice of a small set of predicates. In previous work [7] the refinement is 
done by adding predicates that eliminate the new spurious counterexample while maintaining the 
predicates that were found in previous iterations. However, this accumulative approach cannot 
guarantee an imperative set of predicates, because it depends on the order in which the 
counterexamples are identified and the choice of predicates at each step.  

In this paper, we described a technique for improving the performance of the abstract refinement 
loop by applying lazy abstraction with an imperative predicates set, which is expected to reduce the 
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overall verification time and required space. Our experimental results show that indeed the number 
of predicates and consequently the amount of memory required are significantly reduced. 

Related Work 
Abstraction techniques are often based on the abstract interpretation work of Cousot and Cousot 

[8] and require the user to give an abstraction function relating concrete datatypes to abstract 
datatypes. The notion of CEGAR was originally introduced by Kurshan [9] (originally termed 
localization) for model checking of finite state models. CEGAR for ANSI-C programs was promoted 
by the success of the Slam project at Microsoft [10]. Thus, there are already a number of other 
implementations, such as Magic [11] and Blast [12].  

The BLAST toolkit [12] introduced the notion of lazy abstraction, where the abstraction 
refinement is completely demand-driven to remove spurious behaviors. The abstraction is constructed 
on-the-fly and only to the required precision. Yogi [13] is a tool that implements the Dash algorithm, 
which combines testing and verification in order to achieve better performance. Strichman et al. [14] 
use a SAT engine for identifying (or approximating) the minimal set of predicates needed to eliminate 
a set of spurious counterexamples during refinement of abstract C programs. The predicate 
minimizing algorithm is implemented in the MAGIC tool, which uses a theorem prover to compute 
predicate abstraction. The problem of finding small sets of predicates (yet not minimal) is also being 
investigated in the context of hardware designs in [15].  

To our best knowledge, the technique reported in this paper is the first effort to apply lazy 
abstraction with an imperative predicates set for the actual construction of a predicate abstraction of 
software. The reported technique is defined in the context of MISRA-C programs. 

Lazy Abstraction with Imperative Predicates 

Counterexample Guided Abstraction Refinement. The CEGAR framework is shown in Fig 1:  

 

Fig. 1  Counterexample Guided Abstraction Refinement 

Step 1. Program abstraction. Given a set of predicates, a finite state model is extracted from the code 
of a software system and the abstract transition system is constructed.  
Step 2. Verification. A model checking algorithm is run in order to check if the model created by 
applying predicate abstraction satisfies the desired behavioral claim 𝜑. If the claim holds, the model  
checker reports success (𝜑 is true) and the CEGAR loop terminates. Otherwise, the model checker 
extracts a counterexample and the computation proceeds to the next step.  
Step 3. Counterexample validation. The counterexample is examined to determine whether it is 
spurious. If this is the case, the bug is reported (𝜑 is false) and the CEGAR loop terminates. Otherwise, 
the CEGAR loop proceeds to the next step.  
Step 4. Predicate refinement. The set of predicates is changed in order to eliminate the detected 
spurious counterexample. Given the updated set of predicates, the CEGAR loop proceeds to Step 1. 
Lazy Abstraction with Imperative Predicates. Lazy abstraction with interpolation-based 
refinement has been shown to be a powerful technique for verifying imperative programs. The lazy 
abstraction concept is aimed at optimizing the naïve abstract-check-refine loop by integrating the 
three steps. The lazy abstraction is based on the following two principles: 
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1 On-the-fly abstraction: The general approach generates the entire abstract model at the 
“Abstract” stage. However, some abstracted regions may never be visited (e.g. unreachable regions). 
The lazy abstraction concept suggests abstracting a region only when it is needed in the next step of 
checking. In this case, the abstraction task is driven by the checking process. 

2 On-demand refinement: The lazy abstraction concept suggests that we can reuse the partial 
answer that is obtained in previous iterations. As a result, we can avoid refining those regions that 
have already been proved to be safe. Refinement is applied starting from the earliest state at which 
the abstract counterexample fails to have a concrete counterpart. This state is called pivot state.  

Lazy Abstraction is based on a CEGAR loop. At the “Refinement” stage, the refinement is done 
by adding predicates that eliminate the new spurious counterexample while maintaining the 
predicates that were found in previous iterations. This is done by generating an interpolant for the 
path to the error state. Since each predicate corresponds to a Boolean state variable in the abstract 
model, the number of predicates directly determines the complexity of building and checking the 
abstract model. Let 𝑃  be the size of a given program and 𝑃𝑟𝑒𝑑  be the number of predicates in the 
abstraction refinement process. Computation cost of this model is 𝑃 ∙ 2 +,-. . It is obvious that the 
smaller the number of predicates in the abstraction refinement process, the exponential reduction in 
the cost of abstraction computation and model checking.  
The abstraction refinement algorithm described in Algorithm 1 performs the lazy predicate 
abstraction analysis with a process to eliminate all the redundant predicates. First, the algorithm builds 
a CFA according to the MISRA-C program. Then it constructs a symbolic representation of the 
concrete transition relation by applying symbolic simulation techniques with the CFA. Next, we add 
predicates (initially an empty set) in current and next state form to the relation between variables, 
resulting in a Boolean formula. Finally, we enumerate symbolically on the values of the predicates, 
using a SAT solver. In fact, in order to prove the safety property, lazy abstraction constructs an 
abstract reachability tree (ART). Each node of the ART is labeled with a location of a CFA. Because 
the locations of a CFA will be visited at least once while constructing the ARG, the Boolean formula 
constructed in advance will be reused. When the abstract program needs to be refined, we use the 
same formula that we have already created, together with the new set of predicates, to create the new 

Algorithm 1. lazy abstraction with imperative predicates 

Input:    program 𝛱, safety property 𝜑 
Output: TRUE if proved 𝛱 ⊨ 𝜑, a counterexample if  
               proved 𝛱 ⊭ 𝜑, UNKNOWN otherwise 
Declare:  
T : set of spurious counterexamples 
P : set of imperative predicates 
L : size limit of P  
Begin 
    build the CFA of program 𝛱; 
    construct a symbolic representation of the concrete transition relation and Boolean formula between adjacent  
    states in CFA; 
    while TRUE do 
        lazy predicate abstraction to prove the safety property 𝜑; 
    if the result is TRUE 
        return TRUE 
    else 
        let 𝜏 be the abstract counterexample 
        if 𝜏 corresponds to a concrete counterexample 
            return FALSE 
        if 𝑃  exceed the predicate size limit L 
            return UNKNOWN; 
        𝑇 := 𝑇	   ∪ {𝜏}; 
        P := set of imperative predicates that eliminates all elements of T 
        update the Boolean formula between adjacent states with P 
End 
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abstraction. The while loop is based on Counterexample-Guided Abstraction Refinement. If the lazy 
predicate analysis has exhaustively checked all program states and did not reach the error, then the 
algorithm terminates and reports that the program is safe. If the algorithm finds an error in the abstract 
state space, then the exploration algorithm stops and returns the counterexample. Now the according 
abstract error path is extracted from the counterexample and analyzed for feasibility. If the abstract 
error path is feasible, then this error path represents a violation of the specification and the algorithm 
terminates, reporting a bug. If the error path is infeasible, i.e., not corresponding to a concrete program 
path, then the precision was too coarse and needs to be refined. 

The algorithm uses Craig interpolant to extract new predicates that must be added to the abstraction 
in order to rule out the infeasible error path. Instead of simply add the new predicates to 𝑃, the 
algorithm checks whether there are any unnecessary predicates that are useless to eliminate all the 
counterexamples and get rid of these redundant predicates.  
Imperative Predicates Set. With the following problem: given a set of spurious counterexamples 𝑇 
and a set of candidate predicates 𝑃, find a minimal set 𝑝	   ⊂ 	  𝑃 which eliminates all the traces in 𝑇. [8] 
proposed a three step algorithm: first, find a mapping 𝑇	   ↦ 2: ;  between each trace in 𝑇 and the set 
of sets of predicates in 𝑃 that eliminate it. Second, encode each predicate 𝑝< ∈ 𝑃 with a new Boolean 
variable 𝑝<>. Third, derive a Boolean formula 𝜎, based on the predicate encoding, that represents all 
the possible combinations of predicates that eliminate the elements of 𝑇 .	 For any satisfying 
assignment to 𝜎 , the predicates whose Boolean encodings are assigned 𝑇𝑅𝑈𝐸  are sufficient for 
eliminating all elements of 𝑇. From the various possible satisfying assignments to 𝜎, we look for the 
one with the smallest number of positive assignments. This assignment represents the minimal 
number of predicates that are sufficient for eliminating 𝑇. 	 
The algorithm is intent on finding the minimal set 𝑝	   ⊂ 	  𝑃  and experiments show that predicate 
minimization can reduce both verification time and memory needed for verification. However, 
minimization does not mean that it is the best strategy. For example, some predicates that are 
eliminated before still can be added by the next CEGAR loop again. So, for each predicate 𝑝, let 
𝑒𝑛𝑡𝑒𝑟(𝑝)  denote the number of time when 𝑝  is added after being eliminated in the abstraction 
refinement loop. If 𝑒𝑛𝑡𝑒𝑟(𝑝)  exceeds a certain user-defined threshold TH, then 𝑝  is assigned a 
dedicated state variable and can never be eliminated since then. If TH = 0, then every predicate will 
be assigned a dedicated state variable as soon as it is discovered. This is similar to performing 
abstraction with no predicate elimination. On the other hand, if TH is big enough, then the reentrant 
times of every predicate will be not under consideration. For any reasonable value of TH, we have a 
hybrid of predicate elimination with and without dedicated predicate states.  

Refinements 

Initial Predicates. Since in lazy abstraction, initial abstraction is typically coarse, the abstract search 
is very likely to reach the target (i.e. error states). Moreover, if the user guarantees that some error 
states will never be reached, the abstraction of these states is unnecessary. See Fig. 2 below, if the 
user promises that variable 𝐿𝑂𝐶𝐾 will always be 0, then the left side sub-tree should be omitted 
instantly. The predicate 𝐿𝑂𝐶𝐾 = 0 can be added to the initial predicates set by user. Such a user 
provided initial predicate improves the efficiency significantly in the initial iterations. 

 
Fig. 2  Example of Guaranteed Safe States 

445



 

Pointer Alias Analysis. In a typical application there may be a large number of variables having the 
correct type as *𝑝, while only a few that 𝑝 can actually point to. In order to minimize the size of the 
equation generated we use all the information we can extract from the program about the possible 
targets of 𝑝. Using the (dynamic) information obtained from the predicates, we can save a lot more 
than by merely using static points-to algorithms.  
Let 𝛩 𝑝 	  denote the set of variables which 𝑝 can legally point to (i.e., the variables with a compatible 
type). We analyze the set of predicates 𝑃 and extract a set of variables 𝜃 𝑝, 𝑃 ⊆ 𝛩 𝑝 	  such that 𝑣	   ∈
𝑝, 𝑃  holds if it is possible to derive from the predicates that 𝑝 points to 𝑣.  

Let 𝑃	   = 	   𝜋S, … , 𝜋U  be the set of predicates. Then 𝜃 𝑝, 𝑃  is the set of variables 𝑣	   ∈ 𝑝, 𝑃  for 
which there exists a truth assignment to the predicates such that the resulting conjunction implies that 
𝑝 holds the address of 𝑣. 
                        𝜃 𝑝, 𝑃 	  ≜ 	   𝑣	   ∈ 𝛩 𝑝 	  |	  ∃𝑏S, … , 𝑏U. 𝑏< ↔ 𝜋S ⇒ 𝑝 = &𝑣<]S,…,U                      (1) 
A pointer dereference *𝑝 in an expression is replaced by a case split on all the variables from 𝜃 𝑝, 𝑃 . 
Let 𝜃 𝑝, 𝑃 = 	   𝑣S, … , 𝑣U . We replace every occurrence of *𝑝 with  
                                   𝑝 == &𝑣S ? 𝑣S: 𝑝 == &𝑣: ? 𝑣::… 𝑝 == &𝑣U ? 𝑣U: ⊥                                   (2) 
where ⊥  is a default value, which is never used. For example, assume we have predicate set 
𝑝 = &𝑥, 𝑝 = &𝑦 , the expression x = *p + 1 will be transformed to x = ((p == &x) ? x : y) + 1. 

Experiments 
All the experiments reported in this section have been carried out on a 32-bit Linux distribution 

(Ubuntu 14.04) running on an Intel Core i7-2760QM Processor (4 cores). We set the memory limit 
to 4 GB and the time limit to 3 hours. We use the benchmarks that are same with [14] in order to 
compare the performance of out tool with MAGIC and BLAST. Here we only compare BHLA(TH=2) 
with BLAST. 

Table.1  Experiment Result for BLAST and BHLA 

Program BLAST BHLA(TH=2) 
Time Iter Pred Mem Time Iter Pred Mem 

funcall-nes 1 3 13/10 × 1   2   12/1   ×  
fun lock 2 7 7/7 × 2   4   7/3   ×  
driver.c 1 4 3/2 × 3   5   3/2   ×  
read.c 3 11 20/11 × 4   2   18/1   ×  

socket-y-01 2 13 16/6 × 3   3   16/2   ×  
opttest.c 4936 38 37/37 231 133 27 37/4 213 
ssl-srvr-1 1523 16 33/8 175 145 15 32/2 138 
ssl-srvr-2 452 13 2/1 60 123 15 2/1 58 
ssl-srvr-3 785 14 32/7 103 98 12 32/2 128 
ssl-srvr-4 160 11 27/5 44 84 10 27/2 38 
ssl-srvr-5 1323 19 52/5 71 593 13 50/2 63 
ssl-srvr-6 * 39 90/10 805 * 24 90/3 590 
ssl-srvr-7 231 11 76/9 37 82 11 76/2 38 
ssl-srvr-8 * 25 35/5 266 92 13 35/3 220 
ssl-srvr-9 212 10 76/9 36 173 20 76/4 38 

ssl-srvr-10 6785 20 35/8 148 111 14 35/3 138 
ssl-srvr-11 368 11 78/11 51 224 24 78/3 57 
ssl-srvr-12 1708 21 80/8 120 152 18 80/3 104 
ssl-srvr-13 432 12 79/12 54 300 29 79/4 58 
ssl-srvr-14 9548 27 84/10 278 206 20 83/3 252 
ssl-srvr-15 * 31 38/5 436 103 11 36/3 401 
ssl-srvr-16 * 33 87/10 480 219 19 84/3 358 
ssl-clnt-1 258 16 5/3 43 88 13 5/2 31 
ssl-clnt-2 389 15 28/4 52 101 18 28/2 35 
ssl-clnt-3 310 14 5/4 49 124 21 4/2 39 
ssl-clnt-4 273 13 4/3 45 119 19 4/2 29 
TOTAL 29702 447 1178/221 3584 3458 382 1025/64 3026 
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Table. 1 show the experiment result for BLAST and BHLA respectively. ‘*’ indicates running 
time longer than 3 hours, ‘×’ indicate negligible values. Iter reports the number of iterations through 
the CEGAR loop. In Pred column, the first number is the total number of predicates discovered and 
the second is the final size of 𝑃.  

From the experiment result we can see that both the execution time and memory usage of BHLA 
are less than BLAST. Moreover, there are three test cases BHLA can prove successfully while 
BLAST exceeds the time limit. 

Summary 

Predicate abstraction is a common and efficient technique in software verification domain. 
However, when the size of the program (number of branching conditions) is large, predicate 
abstraction suffers from the computation cost that increases exponentially as the number of predicates 
increases. Lazy abstraction with interpolation-based refinement has been shown to be a powerful 
technique for verifying imperative programs. In this paper, we propose a technique that combines 
lazy abstraction with imperative predicates set and realize it inside the BHLA tool. Experiment results 
show that our technique outperforms existing methods. 

In the future, we would like to extend our abstraction refinement with more than one 
counterexample. Moreover, the priority-based search dedicated to improve the efficiency of the 
CEGAR iterations [15] is worth further investigation. 
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