
1 INTRODUCTION 

The inverted pendulum system is a inherently 
underactuated system with high order, nonlinear, 
multivariate, and strong coupling. Since the 
feasibility and performance of the algorithms can be 
tested on it and it’s similarity in control of operation 
of satellite and robot walking with two legs, it has 
always been the hot topic in control fields. 

The sliding mode control(SMC) was proposed by 
Utkin. It is a robust discontinuous controller which 
is insensitive to the parameter variation and 
disturbance with easy implementation and quick 
response. But the main drawback, chattering, can 
damage the system performance and even lead to 
instability since it’s high-frequency oscillation. 
Specialists are committed to solving this problem. 
Gao proposed a exponential reaching law,  
eliminating chattering and cutting reaching time 
down efficiently.[6] The reaching component of 
SMC is replaced by an IT2FLS to reduce chattering 
taking into consideration possible system 
uncertainties.[1] A robust adaptive sliding control 
law is designed, not having sign function, to 
eliminate the chattering and to ensure the occurrence 
of the sliding motion even when systems are 
perturbed with unknown uncertainties and external 
disturbances.[2] A high-order sliding mode(HOSM) 
control is proposed to handle the chattering problem 
with the chattering-free behavior and robustness 
against external disturbances.[4] A robust discrete-
time SMC algorithm coupled with an uncertainty 
estimator based on sliding modes is used for a planar 

robotic manipulator. Good tracking performance and 
robustness are obtained when payload perturbations 
and inaccuracies disturbances exist. [5] 

In this paper, double inverted pendulum model is 
presented. A novel approach law is applied to SMC 
controller to weaken chattering and shorten 
approach time. Simulation is given to stabilize the 
system and finally we draw some conclusions.  

2 DOUBLE INVERTED PENDULUM SYSTEM 
FORMULATION 

The DIP system physical model is shown as Fig.1.  
 

 

Figure 1. Physical model of DIP system. 

Which 1 , 2 , x , ,,M 1m 2m , 3m 21 , ll represents the 
angle of pendulum1,2;cart position;mass of cart, 
pendulum1,2 and pivot; distance from turning center 
to mass center of the pendulum 1,2 respectively. 

Lagrange motion equations is used to obtain the 
DIP system nonlinear model as follow: 
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],,,,,[ 2121  xx is selected as state 
variables.After linearization around equilibrium 
points, the linear model is as follows: 
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Where u is control force applying onto the cart, 
G,H,C are as follow: 
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3 SLIDING MODE CONTROL 

Sliding Mode Control is a kind of discontinuous 
control,which can be expressed as: 
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Switch surface  xs must be reached in finite 
time.The control law guarantee system slides to the 
equilibrium points along the surface instead of 
passing through it back and forth,namely reducing 
chattering.Theoretical proof must be given to ensure 
accessibility of sliding mode. 

3.1 Switching surface design 

For DIP linear state-space model HuG  ,the 
switching face can be defined as a linear 
combination of state variables:  

  2615423121K   kkxkkkxk             (5) 

The K is given by Ackermann formulation [3]:  
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Which iw  is the target pole. 

3.2 Control law design 

Traditional exponential approach law ensures a large 
speed to approach switching face, while the final 
speed is a positive constant instead of zero, never 
letting the system remove chattering theoretical. 
Traditional power approach law provides a gentle 
speed when closer to the surface to eliminate 
chattering, undesirable extending reaching time still 
damages the dynamic property. 

In order to balance the advantages and 
disadvantages of the two reaching laws, to get better 
control performance, in this section, a new type of 
approach law is designed as follow: 

    sgnsgn
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Where 01,1,0,0 2121   . 
When the system away from the sliding 

surface( 1 ), the first term plays a leading role, 
otherwise( 1 )the second term does. In this way, 
the proposed law preserves the advantages of power 
approach law, which sliding into the surface gently 
with the purpose of decreasing chattering and 
enhancing approach speed in reaching stage to be 
aimed at getting better control performance 
simultaneously. 

On the basis of the linear mode of DIP and 
approach law, the control law can be shown as 
follow: 
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3.3 Stability analysis 

To ensure the stability of control system, we choose 
a Lyapunov function as: 
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It shows surface    can be reached in finite 
time from any  0 , meeting the requirements of 
the sliding mode accessibility. 

  10  is taken as an example to calculate 
reaching time.The process is divided into two parts. 

Stage one:  0  moving to   1  
Due to   10  , 01,1 21   ,the first term 

in formula(9) plays a main role,while ignoring the 
other term,the approach law can be written as: 
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Compute integral of formula(13) on both sides: 
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Then we get the approach time in stage one as: 
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Stage two:   1  moving to   0  
Because of   10  , 01,1 21   ,the 

second term in formula(9) plays a main role instead, 
the approach law can be written as: 
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Compute integral of formula(16) on both sides: 
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Then we get the approach time in stage two as: 
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The whole approach time is obtained as: 
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Analogously,when   10  ,the approach time 
can be written as: 
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In fact,real approach time is less than calculation 
time by ignoring the secondary factors. 

4 SIMULATION 

Figure.2 shows the controller design using new type 
approach law in matlab/simulink environment.  

 

Figure 2. DIP controller design 

Seen from repeated experiments,the larger target 
poles are chosen,the shorter adjusting time the 
system will get.The overshoot is getting bigger since 
the faster response speed.Also stronger control force 
may over operating range of the actuator, damaging 

control effects. Increasing the value of parameter 

1 and parameter 1 can accelerate the approach 
velocity far away from switch surface. Similarly 
for 2 and 2 ,under the premise of smoothly reaching 
the surface, appropriate value increasing will reduce 
the reaching time for better approach quality. 
Considering the above factors, We select the target 
poles as -5,-7,-9+4i, -9-4i,-17,and controller 
parameters are given like 5.1,2.0 21   , 

9.0,2 21   .The initial condition of the states is 
chosen to be ]0,0,0,1.0,1.0,1.0[ . 

The simulation results of proposed controller 
compared with the traditional exponential approach 
law are shown in Figure.3-Figure.5: 

From figure.3-figure.5 we can see that by 
employing the proposed method on DIP,pendulum1 
and pendulum2 converges to the desired value 
smoothly in about 1.5 seconds with little overshoot, 
while the traditional exponential approach law needs 
longer time to stabilize system balance, with 
fluctuation and bigger overshoot. Despite the cart 
needs longer settling time, the system has a low 
precision of it. It comes to the conclusion easily that 
the proposed method cuts down the approach time, 
in the meanwhile, reduces the overshoot to get the 
system better dynamic quality. 
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Figure 3. Angle of pendulum1 
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Figure 4. Angle of pendulum2 
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Figure 5. Position of cart 
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Figure.6 and Figure.7 show the control input of 
the system: 

By comparing,the new type approach law 
eliminates the chattering obviously. 
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Figure 6. New approach control law 
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Figure 7. Traditional approach control law 

When the disturbance signal  ty 2sin2.0 is 
added to the system,the simulation results are shown 
in Figure.8-Figure.10: 
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Figure 8. Angle of pendulum1 
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Figure 9. Angle of pendulum2 
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Figure 10. Position of cart 

The simulation results demonstrate that the 
systym outputs can return to equilibrium point 
rapidly with no more than 0.06 fluctuation range, 
which well proves that the proposed method has fine 
anti-interference performance. 

5 CONCLUSION  

A sliding mode controller based on new type of 
approach law is applied to double inverted pendulum 
system. The Theoretical proof and compared 
simulation results all demonstrate that utilizing 
proposed method can weaken the chattering and 
shorten the reaching time, meanwhile reduce the 
overshoot, getting the system better dynamic quality. 
From the disturbance simulation experiment, we can 
see the controller is insensitive to external 
disturbance. A summary of all that, the proposed 
method is effective with a high control performance. 
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