
1 INTRODUCTION 

With the development of industrial automation, 
machine vision system is widely applied in 
automatic equipments. Currently, the conventional 
method is PC or IPC (industrial computer) with 
universal image processing software. The IPC brings 
the large size and high cost. And the universal 
software has multiple functions and good 
performance, such as the HexSight of Adept 
Company and the CVB of Stemmer Imaging 
Company. But the software structure is complicated 
and difficult to master. Usually only a limited 
amount of functionality is used and results in great 
waste.  

In contrast, ARM controller has small size and its 
efficiency is improved gradually with the 
development of IC chip. The Linux system used on 
ARM is open source and has steady and flexible OS 
kernel. The machine vision on ARM and Linux 
system will have broad applications and it is a 
general trend.  Although the vision system based 
embedded Linux had been seen in some literatures, 
the application in industry is seldom. Paper [1-2] 
only introduce the image capturing and display of 
USB camera, the image processing and object 
localization are not mentioned. 

The key procedure in machine vision system 
includes the industrial camera driver, camera image 
processing, camera calibration, object recognition 

and localization. In the rest of the paper, we will 
introduce the system in detail. 

2 KEY TECHNOLOGIES OF MACHINE VISION 
SYSTEM 

2.1 USB camera driver based on libusb 

The USB camera is used in this system for its 
advantages of rapid speed, plug and play, flexible 
interface, etc. The first task is the implementation of 
USB device driver. The commonly used technology 
is based on kernel driver technology[3]. But it has 
some questions. For instance, the developer should 
be familiar with the Linux kernel system, and the 
driver is incompatible, it should change some 
program when the kernel version updated. 

Libusb (www.libusb.org) is an open source 
project. It is a C library that gives applications easy 
access to USB device on many different operating 
systems. It provides a set of API interfaces for user 
to develop USB drivers. From the libusb source 
codes, we can see these APIs invoke the kernel’s 
underlying interface which are similar with the 
kernel driver technology. Because libusb is much 
closer to the USB specification, it is easier than 
kernel driver for developers. The detailed procedure 
is as follows: 
1) Download the libusb source code; 

Machine Vision Processing System based on Embedded Linux 

C. MA 

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 

L.P. XU 
Yantai Vocational College, Laishan Yantai City, Shandong, China 

Z.D. WANG, K. HE 
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 

Shenzhen Key Laboratory of Precision Engineering, Shenzhen, China 

R.X. DU  
The Chinese University of Hong Kong, Hong Kong 

ABSTRACT: Machine vision is widely used in automatic equipments, but the vision system based on 

embedded Linux is seldom at present. The key points and difficulties are the image processing and its real-

time on embedded system. This paper introduces the vision processing system based on ARM and Linux, 

mainly introduces the USB camera driver, image matching, camera calibration and object localization. 

Comparing the conventional method using PC with universal software, vision processing system based on 

ARM and Linux greatly reduces the system size and cost. Experimental results show that this system can 

accurately recognize and locate the target object. The efficiency can meet the requirement basically, and it still 

has room to improve. Combined with industrial robot, this vision system can be used to automatic carrying, 

assembly, etc. 

KEYWORD: machine vision; template match; camera calibration 

International Conference on Industrial Technology and Management Science (ITMS 2015) 

© 2015. The authors - Published by Atlantis Press 1277



2) Configure and make install on embedded linux 
system; 

3) Copy the generated libs to ARM controller (eg: 
libusb-1.0.so, libusb-1.0.so.0, libusb-1.0.so.0.1.0) 

4) Use the API functions to driver camera (eg: 
libusb_bulk_transfer / libusb_control_transfer to 
transfer image data or control commands) 

2.2 Camera image processing 

In industrial application, the camera is used to 
distinguish and locate the objects.  Some image 
processing methods should be used to reduce noise 
or interference, like the gray conversion, 
binarization, smooth filtering, etc. After pre-
processing, the key step is the template matching and 
object localization. The match method usually 
includes: 
1) Least square error (LSE):  

2

', '

( , ) [ ( ', ') ( ', ')]
x y

R x y T x y I x x y y   
         (1) 

2) Correlation match:  

', '

( , ) [ ( ', ') ( ', ')]
x y

R x y T x y I x x y y   
           (2) 

3) Correlation coefficient:  

', '

( , ) {[ ( ', ') ] [ ( ', ') ]}
x y

R x y T x y T I x x y y I     
   (3) 

Where, T is the template image and I is the 
camera image, T  and I are mean values. LSE 
method searches the minimum value, correlation 
method uses the maximum value, and the coefficient 
finds the value closest to 1.  

Pre-processing images

Select template (target object)

Determine match method

Slide template and match with 

the camera image

Satisfy threshold?

Return matching points

Y

N

 

Figure 1. Camera image matching procedure 

The detail procedure of image processing is shown 
in Figure 1. The match time has an important impact 
on system real-time. Two measurements are taken to 
reduce template matching time. One way is setting a 

threshold value to end the match searching; the other 
is scaling down the size of camera image and 
template image. 

2.3 Camera calibration and coordinate 
transformation 

Getting object position in the real world from a 
camera image, there is a serial of coordinate 
transformations. Seeing from the Figure2, it includes 
the image pixel coordinate (u,v) to image physical 
coordinate (Xf, Yf), the image (Xf, Yf)) to camera 
coordinate (x,y,z), the camera coordinate to the 
physical world coordinate (XW,YW,ZW). Based on the 
ideal pin-hole imaging model, we can get the 
transformation equations. From image pixel 
coordinate to the camera coordinate is: 

0

0

/ /

/ /

x x

y y

u u fs x z f x z

v v fs y z f y z

  


                       (4) 

Image pixel to the world coordinate is: 

0

0 1 2

0 0

0 0
0 1

1 0 0 1 0
1

w

x

w

y T

w

x
f uu

R T y
z v f v M M X MX

z

 
    

                    
    (5) 

Where, u,v are the image pixels, x,y are the value 
in camera coordinate. fx 、 fy 、 u0 、 v0  are the 
camera’s intrinsic parameters which relevant with 
camera internal structure. The translation vector T 
and rotation matrix R are extrinsic parameters. 

x

y

Camera  O

Image

u

v

Yw

Xw

Zw

z

object



f
fX

fY

f

 

Figure 2. Coordinate transformation 

The intrinsic parameters are determined by camera 
calibration. We use the Zhenyou Zhang’s method [4] 
and make a calibrate board. A set of images of the 
board are collected to calculate the parameters. 
Besides these 4 parameters, camera has radial 
distortion and tangential distortion for the 
lens‘ property and assembly errors. To improve 

1278



calibration precision, the distortion parameters can 
be calculated using Brown’s method[5]. But it will 
increase computational complexity, it is not 
considered here.  

3 EXPERIMENTAL RESULTS 

Hardware platform: OK210 controller, USB camera 
(1/3’’ CMOS black and white, 36-megapixel, 
54fps@752*480). The software: Embedded Linux 
system (2.6.35 version), Qt 4.8 for displaying image. 

 

Figure 3. Hardware platform 

3.1 Image acquisition and processing 

The industrial camera is connected with ARM 
controller and captures images.  In this part, it is 
used to identify different objects. We select the 
white triangle as template shape and calculate the 
least square error values. Figure 4(a) and Figure 4(b) 
are the match results. Blue box shows the match 
position. At Figure 4(a), the right-top triangle is 
found and the calculation ends. When some 
interference is generated at top triangle, it will find 
the bottom one which has the least square errors. 

 (a) 

 (b) 

Figure 4. Template matching results 

Here we apply OpenCV to process the images. 
The whole time of image processing and displaying 
on screen is nearly 2 seconds. The real-time 
performance should be improved further. Some 
measurements can be taken. For example, try 
parallel computing in OpenCV, optimize the data 
type transfer efficiency from OpenCV (IplImage) to 
Qt (QImage). Besides, the faster processor can be 
used to improve the processing speed. 

3.2 Camera calibration 

The calibration board made is white and black 
checkerboard. It has 5 lines and 6 columns with 
30mm width. And 10 images are collected to 
calibrate camera. Figure 5 shows two among them.  
Figure 6 is the corner detection results.  

 

Figure 5.Two calibration board images 

 

Figure 6. Corner detection 

1279



After calibration, the intrinsic parameters can be 
received, showed as equation (6). Extrinsic 
parameters are relevant with the actual position and 
each image has different extrinsic parameters. 

0

0

0 2133.2 0 518.0

0 0 2124.4 220.6

0 0 10 0 1

x

y

f u

f v

   
   

   
                (6) 

3.3 Coordinate transformation 

The other image of calibration board is captured to 
test the calibration parameters, like Figure 7. 
Selecting 3 corners, such as the A, B, C, the acutal 
distance of AB and AC both are 30mm. Using 
calibratin parameters calculated above and the 
equation (4), the distance between A and B, A and C 
can be received. A(327,199), B(324,277), 
C(406,201) are the pixel positions in the image. 

 

Figure 7. Image used to verify calibration parameters 

Then, the distance is : 

22

A B A B

x y

u u v v
AB z

f f

   
       

    =29.0 mm 

22

A C A C

x y

u u v v
AC z

f f

   
       

    =29.2mm                                                                               

Where, z is the vertical distance between camera 
and object. Here the object is the calibration board 
and z is about 789mm. It can be seen the calibration 
parameter has little bias but basically meet the 
requirement. Considering the distortion parameters, 
it would be better.  

Adding the extrinsic parameters (rotation matrix 
and translation vector), physical position of object in 
the world coordination can be calculated. Then, 
according to target position, the industrial robot will 

plan motion path to complete automatic carrying or 
assembly 

4 CONCLUSIONS 

The machine vision system based on embedded 
Linux is presented. For USB camera driver, the 
libusb is used to simplify development. The camera 
calibration and template matching are also 
introduced. Using calibration parameters and the 
matching position, the world coordination of target 
object can be calculated.  

Accuracy and real-time are two key points for 
vision system on embedded Linux. From the 
experimental results, the calibration parameter is 
verified and the template matching is effective. They 
satisfy the accuracy requirement. The real-time of 
embedded processing system is important for 
industry application. Template matching is the most 
time-consuming part which should be optimized 
further. On one hand, the faster hardware platform 
can be used to improve processing speed. On the 
other hand, the parallel computing or software 
optimizing can be tried in the future. 

ACKNOWLEDGEMENT 

This work was financially supported by the 
Guangdong Introduced Leading Talents Project, the 
cooperation project of Guangdong Province and 
Chinese Academy of Sciences (2011B090300031), 
the cooperation project of Foshan and Chinese 
Academy of Sciences (2012HY100021). 

REFERENCES 

[1] Qian, Y. & Chen, S.L. 2013. Image acquisition and display 
with USB camera based on embedded platform. Electronic 
Design Engineering 21(3): 140-142. 

[2] Huang, Z.F. & Chen, H.P. et al. 2012. Image processing of 
detection system for parts in industrial camera based on 
OpenCV and USB. Modern Electronics Technique 35(18): 
128-132. 

[3] Song, L.H. & Gao, K. 2010. Implementation of USB 
camera drive under Embedded Linux. Computer 
Engineering 36(9): 282-284. 

[4] Zhang, Z. 2000. A flexible new technique for camera 
calibration. IEEE Transaction on Pattern Analysis and 
Machine Intelligence 22(11): 1330-1334.  

[5] Brown, D.C. 1971. Close-range camera calibration. 
Photogrammetric Engineering 37(8): 855-866. 

 

1280




