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Abstract. This paper present a cross domain dictionary learning way, via the introduction of 
auxiliary domain,as the extra knowledge, the intra class diversity of the original training set (also 
known as the targetdomain) is effectively enhanced.Firstly,use local motion pattern feature as a 
low-level feature descriptor, and then through a cross domain reconstructive dictionary pairlearning, 
which brings the original target data and the auxiliary domain data into the same feature space to 
get correspondingsparse codes of each human action categories.Finally, classification and 
recognition is carried on thehuman action representation. Usingthe UCF YouTubedataset as 
theoriginal training setand the HMDB51 data set asthe auxiliary data set,the recognition rate of the 
proposed framework is significantly improvedon the UCF YouTube dataset. 

Introduction 

In the past few years,human action recognition has been a hot topic in the field of computer 
vision. Due to the clutteredbackground, the geometric and photometric changes ofthe target,the 
application in real world is also a big challenge. 

The low-level human action recognition is the basis and the first step of the human behavior 
Analysis.Generally,the process of the recognition isconsist of two major parts:theaction video 
representation and recognition.In the step of the description of the features, the local feature 
description of the human movement target, such as the spatial and temporal key pointshappens in 
the video contain important information that necessary for the analysis of human behavior. C. Harris 
and M. J. Stephens[1] proposed the classic corner detection method, the spatial and temporal 
characteristic expression of the moving objects can be well expressed. Laptev[2] expand the Harris 
corner detection[3]to the 3D space, which is also a kind of space-time interest points (STIP). We use 
the LMP descriptor[3],which is expansion of the STIP, to get more useful information about the 
movement ofthe target. Su et al[4]proposed the semantic features and Yao[5] proposed pose 
estimation feature. In these works, it is supposed that all test set and the training set in the same 
feature space and identically distributed. But in the real video surveillance, it cannot be always 
guaranteed. Insufficient training data, i.e. each action class training only an action template will lead 
to the reduction of therecognition rate, such as Cao’s[6] and Liu’s[7] algorithm there are similar 
problems. In the process of learning of the training set, to solve such problems, we divides the 
original training set into the target domain and theauxiliarydomain, learning a construction 
dictionary pair, bring the target domain data and the auxiliary domain data into the same feature 
space. 

The remainder of this paper is organized as follows: section 2 discusses the work of action video 
representation before the cross-domain dictionary learning and the recognition. Section 3,we 
discuss related dictionary learning techniques and then introduce the cross domain dictionary 
learning method.Experimental results are presented in Section 4.We conclude the paper in Section5. 
The flow-chat of the algorithm is shown in Fig.1. 
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whereW are the coefficients of the linear classifier,H are the class labels of the target domain,Q 
are the target discriminative sparse codes,	α and βcan control the contribution of the Q. 

The column-wise Lଶ  normalization is applied to D,the optimization problem above canbe 
solved using the K-SVD.Each dictionaryelement d୩  and its non-zero coefficient x୲୩ can be 
computed by 

൏ d୩, dୱ ൐ൌ ݃ݎܽ	 	minୢౡ,୶౪ౡ ∥ E୩ െ d୩x୲୩ ∥୊
ଶ, 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 s.t.∀i,∥
x୲୧ ∥଴൑ T(8) 

WhereE୩ ൌ Y െ ∑ d୧୧ஷ୩ ∗ x୲୧.K-SVD is used as follows: 
U∑V ൌ SVDሺE୩ሻ 
d୩෪ ൌ Uሺ: , 1ሻ 

	x෥୲୩=∑ሺ1, 1ሻVሺ1, ∶ሻ(9) 
Where Uሺ: , 1ሻ indicates the firsrt column of U，Vሺ1, ∶ሻ indicates the first raw of V. 

Classification 

During the process of solving the optimization problem, D୲ , Dୗ , 	ϕ  and W are 
jointlynormalized.So they can’t be directly applied to the construct the classification framework，
According to paper[11] D୲,Dୗ,ϕ and W can be computed as: 
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,…,

୛ే
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}                                (10) 

Given a target domain query sample y୲୧ ,its sparse representation x୲୧  can be computed 
throughD෩୲,with the linear classifier F(x:	Wሻ,the label of y୲୧ can be decided as:  
																																																																																												l୨ ൌ argmax୨ሺl୨ ൌW෩ x୲୧ሻ.       (11) 

Experiments 

To validate the effectiveness of our algorithm, experiments are carried out using two data sets, 
where the YouTube UCF data set is viewed as the target domain. the HMDB51data set is more a 
challenging real-world scenarios, it is viewed as the auxiliary domain. We choose the same action 
category from the HMDB51 data set and UCFYouTube data set, including a bike, diving, playing 
golf, jumping, hitting, riding, pitching these seven actions. Figure 3 and figure 4 are representative 
images of 2 data sets.In the UCF YouTube dataset as training random from all data classes have 
selected number of action for the 5/16/24 executor.Firstly, we computer the LMP descriptors from 
video data, Local-constrained Linear Coding[15]is applied to the low-level descriptors. And then 
carryout cross domain dictionary learning. Finally, the corresponding sparse representation 
isobtained for recognition. After the process of the training, we make use of Eq. 11 to decide the 
category of the test action, it’s so called classification. 

We compares with LLC[12], K-SVD[9], and LC-KSVD[13], in Table 1, the method of K-SVD and 
LC-KSVD dictionary learning are unsupervised, and ours is supervised one. The number of the 
executor in each action category is 5/16/24 respectively. We can discover that for many cases, 
knowledge transform the auxiliary domain into the target domain can cause certain performance.  
We can see that with the increase of the number of the executor, the recognition rateincrease. So the 
cross domain dictionary learning method is suitable forthe large data set recognition task. 

Conclusions 

Across domain dictionary learning method through the introduction of auxiliary domains is 
proposed, which effectively expand the target domain intra class diversity, improving the 
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