

Applying the Linear Neural Network to TCP Congestion Control

Lei Niu
School of Computer and Information Engineering, Fuyang Teachers College, Fuyang, Anhui

Province, China

hefeiniulei@163.com

Keywords: Linear Neural Network, Congestion Control, Decision Boundary, TCP Reno.
Abstract. The previous TCP protocol cannot predict congestion. Only when the sender receives more
than three acknowledgements or the retransmission timer is out can it realize that congestion has
occurred. We train the linear neural network by using round-trip time and current TCP throughput as
its inputs. As a result, we get the decision boundary, which could predict whether the current network
is in congestion or not. Simulation results show that, when applied to TCP congestion control, it can
effectively predict the occurrence of congestion, so congestion window could make adjustments as
soon as possible to reduce the probability of congestion collapse.

Introduction
In recent years due to the growing popularity of Internet, data traffic in computer networks is

increasing rapidly. Network congestion has become a serious problem in the networks. Traditional
TCP Reno congestion control algorithm only makes response by reducing the congestion window
(CWND) when network congestion has occurred, and the data rate also decreases with it at the same
time [1]. For better congestion control many scholars have done a lot of meaningful work [2-5]. In this
paper a congestion prediction method is proposed in the senders. It can predict congestion according
to the current RTT and TCP throughput. So the sender can make adjustments to CWND before
congestion collapse to reduce its occurrence.

TCP Congestion Control
TCP congestion control generally contains four parts which are slow-start, congestion avoidance,

fast retransmission and fast recovery [6]. After TCP connection is established, slow-start algorithm
begins to execute firstly. When the value of CWND has exceeded slow-start threshold, then it enters
congestion avoidance stage; if the sender receives three continuous ACKs, it realizes that congestion
has occurred. Then the sender begins to retransmit the lost package without waiting for the overflow of
retransmission timeout. This is so-called fast retransmission. The next congestion avoidance begins to
execute fast recovery rather than slow-start.

TCP finds congestion by receiving continuous ACKs or retransmission timeout overflows. TCP can
confirm congestion in either way, but cannot predict it before its occurrence. What’s more, the
congestion window begins to decrease once it occurs, and the throughput starts to decrease. When
congestion becomes serious the congestion collapse is likely to occur and the network throughput
drops dramatically at the same time, which affects network performance seriously. So it’s very
important to predict congestion as early as possible.

Samples Selection
For any TCP connection, if the network congestion occurs, the RTT of TCP connection increases

rapidly, meanwhile the TCP throughput decreases. So we select the RTT and the throughput of current
TCP as the two inputs of the neural network. In order to obtain training samples, we use the network
simulation tool OPNET10.0. The network topology is shown in Fig. 1. R1 and R2 in the topology are
two routers. We select ppp_E1 as the link between the router R1 and the router R2 in the simulation,
and the highest data rate of the link between the two routers is 2Mbps. But we select the 10BaseT as

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

© 2015. The authors - Published by Atlantis Press 558

the other four links, the its highest data rate is 10Mbps. So congestion would only occur between the
router R1 and the router R2.

A sends the Ftp data to B by using the TCP protocol, video conference takes place between C and
D by using the UDP protocol. At the beginning of the simulation only A sends data to B, and after 20
seconds C starts to send UDP data to D. UDP data rate also continues to increase every 20 seconds
until the congestion occurs.

Fig.1 The network topology Fig.2 The throughput of TCP

The TCP data rate between A and B as shown in Fig. 2, and the RTT of the TCP connections as

shown in Fig. 3. We can find the TCP rate decreases along with the increasing of the UDP rate,
meanwhile the RTT value increases with the decreasing of the TCP rate. We then export data and get
a total of 90 samples. These samples are from the non-congestion and congestion state. Eventually we
select 12 samples from them. The top 6 samples are from the non-congestion state, and the other 6
samples are from the congestion state. As shown in Fig. 4, these 12 samples are normalized. The
horizontal axis represents the RTT, and the vertical axis represents the TCP throughput. The 6
coordinate points got in the non-congestion state are represented by the symbol ◇, and the other 6
coordinate points got in congestion state are represented by the symbol □.

 Fig.3 The RTT of TCP Fig.4 12 selected samples

Network Training
The linear neural network can not only produce binary output, but also generate analog output. The

output of linear transfer function can be of any value. Linear neural network diagram as shown in Fig.

N
or

m
al

iz
ed

 T
hr

ou
th

pu
t(1

)

559

5, and x is the input, w is weight, y is the linear output, and q is a binary output. Next we use RTT and
the current throughput of TCP connections as the inputs of the linear neural network, and train the
network to get the decision boundary used to predict the current congestion state.

We use LMS learning algorithm for the linear neural network. We also name it as Delta rule. The
procedure is as follows:
l Step 1: Defining variables and parameters;
l Step 2: Initialization. Giving a smaller initial random value to the weight;
l Step 3: Inputing the samples and calculating the difference of the desired output and the actual

output;

W(n+1)=w(n)+ηXT(n)d(n). (1)

l Step 4: Adjusting the weights. Continuing to calculate Eq. 1 according to the errors calculated

in the above step. In the Eq. 1, w (n) is weight, η is the learning rate, XT(n) is the sample
inputted, and d(n) is the difference between the expected value and the actual value:

l Step 5: Ending if it’s converged.

 Fig.5 Linear neural network diagram Fig.6 Decision boundary for predicting congestion

y=1/2*w(2)-w(1)/w(2)*x-w(3)/w(2). (2)
According to the steps above, the maximum learning rate η is calculated firstly. Then 12 samples are

inputted. The desired output values are set as six continuous 0 and six continuous 1. Number 0
indicates non-congestion and 1 indicates congestion. Then we start to train the linear neural network.
At last the training result w (n) is substituted into the Eq. 2.

1/2 in the Eq. 2 is a threshold of congestion. Eq. 2 is the decision boundary we get for predicting
congestion, and the result as shown in Fig. 6. If the coordinate of the RTT and the throughput of the
current TCP connection is above the decision boundary, it indicates that the current network state is
good and congestion does not occur. On the contrary, if the coordinate is below the decision boundary,
it shows that congestion is happening or will happen. If so, the CWND value will not increase along
with the received acknowledgements, but keep constant to avoid the congestion by reducing the data
transmission rate. If the network status changes better, the coordinate returns to the above, then
congestion notice is relieved, and continues to perform the original TCP congestion control algorithm.

Simulations
We continue to use the network topology shown in Fig. 1. A sends TCP data to B. C sends UDP

data to D, and the UDP data rate reaches 2.4Mbps, which has already exceeded the capacity between

560

these two routers, so congestion occurs. The simulation time is 100 seconds and the original TCP
algorithm is still used. Because the UDP data rate is too high, much more packets reach the buffer of
router R1, TCP packets reaching the buffer are discarded with high possibility. The TCP congestion
window of the simulation results is shown in Fig. 7. The congestion collapse occurs at least 3 times,
which results in the sharp decrease in the congestion window as well as the TCP throughput.

Next we apply the decision boundary of the linear neural network to TCP protocol. The TCP
congestion window is shown in Fig. 8. We can find the congestion state judged by the decision
boundary is still going on, so the TCP congestion window doesn’t continue to increase with the coming
of ACKs in the congestion avoidance stage, but keeps stable. The congestion collapse is not found,
meanwhile the TCP throughput increases slightly.

Fig. 7 The CWND of original algorithm Fig. 8 The CWND by using the decision boundary

Summary
According to the variation of the RTT and the throughput of the TCP connection in the congestion

and non-congestion state, we input them into the linear neural network and train the network with
samples and get a decision boundary. We apply the decision boundary to TCP protocol. The simulation
results show that it can effectively predict the congestion and reduce the probability of congestion
collapse.

Acknowledgment
This work is supported by the fund of scientific research of education department of Anhui province

(2015KJ014), and the fund of National Statistical Science Research (2014LZ32).

References

[1] Jacobson V, Congestion avoidance and control, ACM Comput. Commun. Rev. 18(1988) 314-329.

[2] A. B. M. Alim Al Islam, V. Raghunathan, iTCP: an intelligent TCP with neural network based
end-to-end congestion control for ad-hoc multi-hop wireless mesh networks, Wirel. Netw. 21 (2015)
581-610.

[3] Chi-Sen Li, Mu-Chen Chen, Identifying important variables for predicting travel time of freeway
with non-recurrent congestion with neural networks, Neural Comput. Appl. 23(2013)1611-1629.

[4] R. L. Ujjwal, C. S. Rai, and Nupur Prakash, Adaptive Congestion Controller for ABR Traffic in
ATM Network, Wireless Pers. Commun. 70(2013)759-768.

561

[5] N. Xiong, L. T. Yang, Y. Yang, J. H. Park, and G. Wei, Design of QoS in Intelligent
Communication Environments Based on Neural Network, Wireless Pers. Commun. 56(2011) 97-115.

[6] A. Kesselman, Y. Mansour, Adaptive AIMD Congestion Control, Algorithmica. 43(2005)97-111.

562

